城市元胞自動機(jī)擴(kuò)展鄰域效應(yīng)的測量與校準(zhǔn)研究
本文關(guān)鍵詞:基于神經(jīng)網(wǎng)絡(luò)的元胞自動機(jī)及模擬復(fù)雜土地利用系統(tǒng),由筆耕文化傳播整理發(fā)布。
[1] 段曉東, 王存睿, 劉向東. 2012.元胞自動機(jī)理論研究及其仿真應(yīng)用. 北京: 科學(xué)出版社. [Duan X D, Wang C R, Liu X D. 2012. Cellular automata theory research and simulation applications. Beijing, China: Science Press.]
[2] 柯新利, 鄧祥征, 陳勇. 2011. 元胞空間分區(qū)及其對GeoCA模型模擬精度的影響. 遙感學(xué)報, 15(3): 512-523. [Ke X L, Deng X Z, Chen Y. 2011. A partitioned GeoCA based on dual-constraint spatial cluster and its effect on the accuracy of simulating result. Journal of Remote Sensing, 15(3): 512-523.]
[3] 李樂, 齊偉, 張新花, 等. 2009. 棲霞市土地利用空間格局的鄰域關(guān)系. 應(yīng)用生態(tài)學(xué)報, 20(4): 909-915. [Li L, Qi W, Zhang X H, et al.2009. Neighborhood relationships of land use spatial pattern in Qixia City. Chinese Journal of Applied Ecology, 20(4): 909-915.]
[4] 黎夏, 葉嘉安. 2005. 基于神經(jīng)網(wǎng)絡(luò)的元胞自動機(jī)及模擬復(fù)雜土地利用系統(tǒng). 地理研究, 24(1): 19-27. [Li X, Yeh A G O. 2007. Cellular automata for simulating complex land use systems using neural networks. Geographical Research, 24(1): 19-27.]
[5] 黎夏, 葉嘉安, 劉小平. 2007. 地理模擬系統(tǒng): 元胞自動機(jī)與多智能體. 北京: 科學(xué)出版社. [Li X, Yeh A G O, Liu X P. 2007.Geographical simulation system: cellular automata and multi-agent. Beijing, China: Science Press.]
[6] 廈門市統(tǒng)計局. 2008. 廈門經(jīng)濟(jì)特區(qū)年鑒: 2008[DB/OL]. 2008-08-01[2014-09-28]. [Xiamen City Statistics Bureau. 2008. Yearbook of Xiamen special economic zone in 2008[DB/OL]. 2008-08-01[2014-09-28]. ]
[7] 廈門市統(tǒng)計局. 2011. 廈門經(jīng)濟(jì)特區(qū)年鑒: 2011[DB/OL]. 2011-08-01[2014-09-28]. [Xiamen City Statistics Bureau. 2011. Yearbook of Xiamen special economic zone in 2011[DB/OL]. 2011-08-01[2014-09-28]. ]
[8] 楊青生, 黎夏. 2007. 基于遺傳算法自動獲取CA模型的參數(shù): 以東莞市城市發(fā)展模擬為例. 地理研究, 26(2): 229-237. [Yang Q S, Li X. 2007. Calibrating urban cellular automata using genetic algorithms. Geographical Research, 26(2): 229-237.]
[9] Batty M, Xie Y. 1994. From cells to cities. Environment and Planning B, 21(7): 31-48.
[10] Batty M, Xie Y C, Sun Z L. 1999. Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 23(3): 205-233.
[11] Chen B Q, Xu H Q. 2005. Urban expansion and its driving force analysis using remote sensed data: a case of Xiamen City. Economic Geography, 25(1): 79-83.
[12] Clarke K C, Hoppen S, Gaydos L. 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B, 24(2): 247-261.
[13] Couclelis H. 1988. Of mice and men: what rodent population scan teach us about complex spatial dynamics. Environment and Planning A, 20: 99-109.
[14] Feng Y, Liu Y. 2013. A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing. International Journal of Geographical Information Science, 27(3): 449-466.
[15] Feng Y J, Liu Y, Tong X H, et al.2011. Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landscape and Urban Planning, 102(3): 188-196.
[16] Hagoort M, Geertman S, Ottens H. 2008. Spatial externalities, neighbourhood rules and CA land-use modelling. The Annals of Regional Science, 42(1): 39-56.
[17] Hansen H S. 2008. Quantifying and analysing neighbourhood characteristics supporting urban land-use modelling//Bernard L, Christensen A F, Pundt H. The European information society. Berlin, Germany: Springer: 283-299.
[18] Kennedy J, Eberhart R C. 1995. Particle swarm optimization//IEEE Service Center. IEEE international conference on neural networks. Perth, Australia: Piscataway IEEE Press: 1942-1948.
[19] Li X, Yeh A G O. 2000. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 14(2): 131-152.
[20] Liao J F, Tang L N, Shao G F, et al.2014. A neighbor decay cellular automata approach for simulating urban expansion based on particle swarm intelligence. International Journal of Geographical Information Science, 28(4): 720-738.
[21] Liu X P, Li X, Yeh A G O, et al.2007. Discovery of transition rules for geographical cellular automata by using ant colony optimization. Science in China: Series D, 50(10): 1578-1588.
[22] Pan Y, Roth A, Yu Z R, et al.2010. The impact of variation in scale on the behavior of a cellular automata used for land use change modeling. Computers, Environment and Urban Systems, 34(5): 400-408.
[23] Pontius Jr R G, Huffaker D, Denman K. 2004. Useful techniques of validation for spatially explicit land-change models. Ecological Modelling, 179(4): 445-461.
[24] Tobler W R. 1970. A computer movie simulating urban growth in the Detroit Region. Economic Geography, 46: 234-240.
[25] Tobler W R. 1979. Cellular geography//Gale S, Olsson G. Philosophy in geography. Berlin, Germany: Springer: 379-386.
[26] Van Vliet J, Naus N, Van Lammeren R J, et al.2013. Measuring the neighbourhood effect to calibrate land use models. Computers, Environment and Urban Systems, 41: 55-64.
[27] Verburg P H, De Nijs T C M, Van Ritsema Eck J, et al.2004. A method to analyse neighbourhood characteristics of land use patterns. Computers, Environment and Urban Systems, 28(6): 667-690.
[28] White R, Engelen G. 1993. Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment and Planning A, 25(8): 1175-1199.
[29] Wu F L. 2002. Calibration of stochastic cellular automata: the application to rural-urban land conversions. International Journal of Geographical Information Science, 16(8): 795-818.
[30] Wu F L, Webster C J. 1998. Simulation of land development through the integration of cellular automata and multi-criteria evaluation. Environment and Planning B, 25(1): 103-126.
[31] Yeh A G O, Li X. 2006. Errors and uncertainties in urban cellular automata. Computers, Environment and Urban Systems, 30(1): 10-28.
本文關(guān)鍵詞:基于神經(jīng)網(wǎng)絡(luò)的元胞自動機(jī)及模擬復(fù)雜土地利用系統(tǒng),,由筆耕文化傳播整理發(fā)布。
本文編號:237117
本文鏈接:http://sikaile.net/kejilunwen/rengongzhinen/237117.html