天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > AI論文 >

基于主成分_遺傳神經(jīng)網(wǎng)絡(luò)的短期風(fēng)電功率預(yù)測(cè)

發(fā)布時(shí)間:2016-11-05 21:38

  本文關(guān)鍵詞:基于主成分—遺傳神經(jīng)網(wǎng)絡(luò)的短期風(fēng)電功率預(yù)測(cè),由筆耕文化傳播整理發(fā)布。


基于主成分_遺傳神經(jīng)網(wǎng)絡(luò)的短期風(fēng)電功率預(yù)測(cè)

第40卷 第23期 電力系統(tǒng)保護(hù)與控制 Vol.40 No.23 2012年12月1日 Power System Protection and Control Dec. 1, 2012

基于主成分—遺傳神經(jīng)網(wǎng)絡(luò)的短期風(fēng)電功率預(yù)測(cè)

羅 毅,劉 峰,劉向杰

(華北電力大學(xué)控制與計(jì)算機(jī)工程學(xué)院,北京 102206)

摘要:短期風(fēng)電功率預(yù)測(cè)對(duì)接入大量風(fēng)電的電力系統(tǒng)運(yùn)行具有重要的意義,建立了基于主成分分析與遺傳神經(jīng)網(wǎng)絡(luò)相結(jié)合的短期風(fēng)電功率預(yù)測(cè)模型。該模型先對(duì)原始輸入數(shù)據(jù)進(jìn)行主成分分析,分析結(jié)果作為神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型的輸入;為克服BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練時(shí)間長(zhǎng)、易陷入局部極小值的的缺陷,采用遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的初始權(quán)值和閾值,并使用Levenberg-Marquardt算法對(duì)網(wǎng)絡(luò)權(quán)值和閾值進(jìn)行細(xì)化訓(xùn)練。經(jīng)某風(fēng)電場(chǎng)實(shí)際數(shù)據(jù)驗(yàn)證,與GA神經(jīng)網(wǎng)絡(luò)模型、PCA-LM神經(jīng)網(wǎng)絡(luò)模型相比,預(yù)測(cè)精度明顯提高,為短期風(fēng)電功率預(yù)測(cè)提供了一種有效的方法。 關(guān)鍵詞:風(fēng)電功率;神經(jīng)網(wǎng)絡(luò);遺傳算法;主成分分析;短期預(yù)測(cè)

Short-term wind power prediction based onprincipal component analysis and genetic neural network

LUO Yi, LIU Feng, LIU Xiang-jie

(School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

Abstract: Short-term wind power prediction is important to the operation of power system with comparatively large amount of wind power, a short-circiut wind power predicting model based on principal component analysis (PCA) method and genetic neural network is proposed. PCA is applied to process original input data, the principal components are used as input data for neural network. In order to solve the problems of slow convergence speed and being easy to fall into local minimum of BP neural network, genetic algorithm(GA) is used to make a thorough searching for the initial weights and thresholds, and the Levenberg-Marquardt (L-M) method is used to finely train the network. Based on the actual data of a wind farm, the forecasting results by the proposed method is more precise than those by GA neural network model and PCA-LM neural network model, providing an effective way to forecast short-term wind power.

This work is supported by National Natural Science Foundation of China (No. 60974051) and Beijing Natural Science Foundation (No. 4122071).

Key words: wind power; neural network; genetic algorithm; principal component analysis; short-term prediction 中圖分類號(hào): TM614 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào): 1674-3415(2012)23-0047-07

0 引言

隨著全球石化資源儲(chǔ)量的日漸匱乏以及低碳、

環(huán)保概念的逐步深化,風(fēng)能等可再生能源的開(kāi)發(fā)與利用日益受到國(guó)際社會(huì)的重視[1]。風(fēng)力發(fā)電是風(fēng)能 的主要利用方式之一,也是可再生能源發(fā)電技術(shù)中發(fā)展最快和最為成熟的一種。但風(fēng)電是一種間歇性、波動(dòng)性電源,大規(guī)模風(fēng)電的接入給電力系統(tǒng)的安全穩(wěn)定運(yùn)行帶來(lái)了新挑戰(zhàn)。對(duì)風(fēng)電場(chǎng)輸出功率進(jìn)行短期預(yù)測(cè)成為解決這一問(wèn)題的有效途徑之一。

基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(60974051);北京市自然科學(xué)基金項(xiàng)目(4122071)

目前,,短期風(fēng)電功率預(yù)測(cè)方法從預(yù)測(cè)模型的對(duì)象角度,可分為兩類:第一類為間接法,即先預(yù)測(cè)風(fēng)速,然后根據(jù)風(fēng)電場(chǎng)的布局與發(fā)電特性等信息計(jì)算風(fēng)電場(chǎng)的輸出功率;第兩類為直接法,即直接預(yù)測(cè)風(fēng)電場(chǎng)的輸出功率[2]。從時(shí)間角度可分為三類:第一類為超短期預(yù)測(cè)(幾分鐘);第二類為短期預(yù)測(cè)(幾小時(shí)到幾天);第三類為中長(zhǎng)期預(yù)測(cè)(數(shù)周或數(shù)月)[3]。從采用的數(shù)學(xué)模型角度可分為四類:物理預(yù)測(cè)方法、統(tǒng)計(jì)預(yù)測(cè)方法、智能預(yù)測(cè)方法、組合預(yù)測(cè)方法[4];跀(shù)值天氣預(yù)報(bào)的物理預(yù)測(cè)方法模型復(fù)雜、計(jì)算量很大;以時(shí)間序列法為代表的統(tǒng)計(jì)預(yù)測(cè)方法模型簡(jiǎn)單,但預(yù)測(cè)誤差較大且預(yù)測(cè)結(jié)果不穩(wěn)定[5];以神經(jīng)網(wǎng)絡(luò)為代表的智能預(yù)測(cè)方法一般不需


  本文關(guān)鍵詞:基于主成分—遺傳神經(jīng)網(wǎng)絡(luò)的短期風(fēng)電功率預(yù)測(cè),由筆耕文化傳播整理發(fā)布。



本文編號(hào):165860

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/rengongzhinen/165860.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e18ca***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com