新型車(chē)用無(wú)級(jí)變速器(BVT)自適應(yīng)加壓機(jī)構(gòu)研究
[Abstract]:With the increasing severity of environmental pollution and lack of energy, energy saving and environmental protection have become the development direction in the future, and the fuel economy of vehicle CVT has been paid more and more attention by the industry. Our research group puts forward BVT., which is based on the structure of semi-annular CVT. In this paper, the Archimedes spiral adaptive compression mechanism in BVT is analyzed theoretically, simulated and studied experimentally. the main research work is as follows: (1) according to the performance requirements of BVT for compression mechanism, the references at home and abroad are consulted. The shortcomings of the steel ball V-groove adaptive compression mechanism in the first generation prototype are pointed out, and the research contents and research objectives of this paper are put forward. (2) in order to compare the performance of the spiral surface and the steel ball V-groove adaptive compression mechanism, The stress analysis and strength analysis of the two kinds of compression mechanisms are carried out respectively, and the structural parameters of the spiral surface are optimized, and it is verified that the two kinds of compression mechanisms meet the requirements of the driving condition of the whole vehicle, and the former has smaller transmission coefficient than the latter. It has the advantages of strong impact resistance and better adaptive compression performance. (3) the contact stress of spiral surface and V-groove adaptive compression mechanism of steel ball is analyzed by using the finite element analysis software ABAQUS, under the driving condition of the whole vehicle. (3) the contact stress of the spiral surface and the V-groove adaptive compression mechanism of the steel ball is analyzed by using the finite element analysis software FEA. Through the comparison of the calculation results of the two kinds of compression mechanisms, it can be seen that the spiral surface adaptive compression mechanism meets the requirements of the driving condition of the whole vehicle and the contact stress is smaller. At the same time, the theoretical analysis and finite element analysis are compared. the results show that the two calculation results are basically consistent, which can be used as the basis for strength check of spiral adaptive compression mechanism. (4) using virtual prototype simulation software ADAMS, By using the dynamic method of multi-flexible body system, the multi-flexible system models of spiral surface and steel ball V-groove adaptive compression mechanism are established respectively, and the simulation curves of the compression mechanism under the driving condition of the whole vehicle are obtained. Through comparison, the effectiveness of theoretical calculation and simulation experiment is verified. And the spiral surface adaptive compression mechanism has better adaptive compression performance. (5) the no-load test and loading test of the second generation (spiral surface adaptive compression mechanism) physical prototype of BVT are completed on the experimental bench. By comparing the experimental results of the two kinds of compression mechanisms with theoretical analysis and simulation analysis, it is verified that the spiral surface adaptive compression mechanism has the advantages of large bearing capacity, stable and reliable compression performance, and meets the pressure requirements of BVT. In this paper, the reliability of the spiral adaptive pressure mechanism under the driving condition of the whole vehicle is verified, which provides a reference for the further development of the research group for BVT.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:U463.212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郝建軍;劉云云;蘭家水;熊鋒;;凸輪加壓CVT設(shè)計(jì)與仿真[J];機(jī)械傳動(dòng);2015年03期
2 申孟宜;;高汽車(chē)保有量下的PM2.5治理研究[J];調(diào)研世界;2013年07期
3 趙志禮;宋智鷹;;立柱和千斤頂缸口矩形螺紋參數(shù)優(yōu)化[J];煤礦開(kāi)采;2013年02期
4 鄭麗偉;付存銀;賈春強(qiáng);;點(diǎn)接觸局部應(yīng)力問(wèn)題研究[J];煤礦機(jī)械;2012年08期
5 關(guān)佩;陳家慶;;Hertz點(diǎn)接觸問(wèn)題求解方法的對(duì)比研究[J];機(jī)械科學(xué)與技術(shù);2011年07期
6 曹成龍;周云山;高帥;安穎;;金屬帶式無(wú)級(jí)變速器夾緊力試驗(yàn)研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年07期
7 何輝波;李華英;秦大同;何培祥;;汽車(chē)環(huán)面型無(wú)級(jí)變速器結(jié)構(gòu)參數(shù)優(yōu)化設(shè)計(jì)[J];機(jī)械工程學(xué)報(bào);2009年05期
8 周有強(qiáng),崔學(xué)良,董志峰;機(jī)械無(wú)級(jí)變速器發(fā)展概述[J];機(jī)械傳動(dòng);2005年01期
9 劉開(kāi)昌,藍(lán)兆輝,石宗寶;行星錐盤(pán)式無(wú)級(jí)變速器的創(chuàng)新設(shè)計(jì)[J];包裝與食品機(jī)械;2003年04期
10 ;An overview on research developments of toroidal continuously variable transmissions[J];Journal of Chongqing University;2003年01期
相關(guān)博士學(xué)位論文 前1條
1 李曉濱;大規(guī)格GCr15軸承鋼連鑄連軋質(zhì)量分析及有限元模擬[D];東北大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 譚豐哲;基于虛擬樣機(jī)技術(shù)的新型無(wú)級(jí)變速器的動(dòng)力學(xué)仿真分析[D];華南理工大學(xué);2015年
2 易園園;AMT換檔機(jī)構(gòu)動(dòng)態(tài)仿真與優(yōu)化設(shè)計(jì)[D];廣東工業(yè)大學(xué);2014年
3 任珂珂;河南省新能源汽車(chē)產(chǎn)業(yè)化的風(fēng)險(xiǎn)研究[D];蘭州交通大學(xué);2013年
4 何威;內(nèi)置氣動(dòng)式彈射裝置設(shè)計(jì)與虛擬樣機(jī)仿真研究[D];大連理工大學(xué);2012年
5 楊凱;金屬帶式CVT夾緊力控制及液壓控制系統(tǒng)的仿真分析[D];湖南大學(xué);2012年
6 袁中亮;金屬帶式無(wú)級(jí)變速器夾緊力控制研究[D];吉林大學(xué);2011年
7 張歡;基于虛擬樣機(jī)的大型船用甲板起重機(jī)結(jié)構(gòu)動(dòng)力學(xué)仿真研究[D];武漢理工大學(xué);2011年
8 姚娟;基于虛擬樣機(jī)技術(shù)的減速器動(dòng)力學(xué)仿真研究[D];武漢理工大學(xué);2008年
9 張春亮;2K-V型減速機(jī)的虛擬樣機(jī)仿真研究[D];天津工程師范學(xué)院;2008年
10 張爾文;重載傳動(dòng)螺旋副受力分析與承載能力研究[D];廣東工業(yè)大學(xué);2007年
,本文編號(hào):2478998
本文鏈接:http://sikaile.net/kejilunwen/qiche/2478998.html