膠輪導軌電車車輛動力學性能研究
[Abstract]:With the rapid development of the city, the rapid increase of the number of motor vehicles leads to the increase of urban traffic pressure, the traditional road traffic mode can no longer meet the travel needs of people, forcing the construction of urban traffic system tend to layer by layer. A diversified development model. At present, subway, light rail and bus rapid transit are the main tools to alleviate the urban traffic pressure. Subway, light rail system capacity is large, but construction, operation and maintenance costs are high, not suitable for low population flow area. The total investment of bus rapid transit construction is small, but its transport capacity is low, and can not satisfy the area with high passenger flow. Therefore, the modern tram, as a new type of rail transit vehicle with low and middle traffic volume between bus rapid transit and light rail, is more suitable for urban operation because of its small total investment in construction. Because there will be vibration and noise between the wheels and rails of the steel wheel-rail tram, which will disturb the people living in the city, the scholars have developed the rubber-wheel guide rail trolley on the basis of it. Compared with the steel wheel-rail tram, the rubber-wheel tram has the advantages of small vibration, high ride comfort, strong curve passing capacity, no need to break down and build the building around the route, strong climbing ability, and so on, which is favored by more and more cities. Firstly, the paper introduces the development history and application of urban tram, and compares two different modes of modern tram, especially the structure of vehicle bogie, the articulated mode and power of adjacent vehicles. The guiding principle of non-power guiding device. Secondly, the stress of rubber wheel is analyzed, and the radial vibration model and lateral vibration model of rubber wheel are established. In the modeling process, the influence of rubber wheel longitudinal slip on tire force is considered. According to the dynamics analysis theory of steel wheel-rail type vehicle, this paper analyzes the force condition of the car system with rubber wheel guideway, and lists the differential equations of vehicle dynamics, mainly aimed at the car body of vehicle headcar, the middle car body and the non-power bogie. The dynamics simulation model of rubber-wheel tram is established by using multi-body dynamics software SIMPACK, and the secondary factors are simplified in the process of modeling. At the same time, according to the automobile dynamics standard and the steel wheel-rail type vehicle dynamics standard, the related dynamics standard of the rubber wheel guideway trolley has been worked out. Next, the structure of the guiding device in the power bogie of the rubber-wheel guideway trolley is studied in detail. By establishing the mathematical model and the dynamic simulation model of the guiding device, the rationality of the structure of the guiding device is checked, so that the left, the left, The angular relationship between right rubber wheels satisfies Ackerman's theorem. Finally, the dynamic performance of rubber-wheel tram under normal operating conditions, ice and snow conditions and tire burst conditions is analyzed. The results show that the vehicle has good running comfort and curve passing performance under normal operating conditions. In ice and snow conditions, the vehicle ride comfort index is not much different from the normal operating condition, and when the vehicle passes through the curve, the roll angle of the different vehicle body increases obviously, but does not exceed the limit value. The sideslip angle of rubber wheel also increases obviously, even exceeds the limit value, the phenomenon of sideslip appears, and the speed should be reduced properly. When the tire explodes, the vehicle runs smoothly at the speed of 35km/h.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:U482.1
【相似文獻】
相關期刊論文 前10條
1 沈鋼;對車輛動力學仿真軟件的考題測試分析[J];鐵道車輛;2000年11期
2 臧其吉;軌道車輛動力學性能與軌道條件密切相關[J];電力機車與城軌車輛;2004年01期
3 錢立新;“2005北京國際車輛動力學高層學術論壇”在京舉行[J];中國鐵道科學;2005年06期
4 王新銳;陳政南;苗曉雨;張?zhí)鞁?;青藏鐵路大型設備運輸車輛動力學性能分析[J];鐵道機車車輛;2011年02期
5 楊國楨;;松平精——車輛動力學的優(yōu)秀研究者[J];國外鐵道車輛;1985年02期
6 臧其吉;車輛動力學的研究和發(fā)展[J];中國鐵道科學;1994年02期
7 孫顯營,熊堅,楊樹忠,楊揚;面向對象的車輛動力學建模及實現(xiàn)[J];云南交通科技;2001年05期
8 程軍,高發(fā)廷,郭慶波;一種簡易實時車輛動力學系統(tǒng)模擬器的開發(fā)[J];上海汽車;2001年04期
9 舒興高,,賀啟庸,洪嘉振;鐵道車輛動力學與控制問題的研究[J];中國鐵道科學;1995年01期
10 賀啟庸,倪純雙,王衛(wèi)東;多體系統(tǒng)動力學與車輛動力學[J];鐵道車輛;1995年01期
相關會議論文 前6條
1 楊財;曹明倫;;基于系統(tǒng)特性的車輛動力學建模方法研究[A];2013中國汽車工程學會年會論文集[C];2013年
2 滕萬秀;;多車連掛系統(tǒng)動力學性能研究[A];中國鐵道學會車輛委員會2004年度鐵路機車車輛動態(tài)仿真學術會議論文集[C];2004年
3 陳鵬;高亮;許兆義;郝建芳;;LVT軌道對于地鐵車輛動力學性能的影響研究[A];可持續(xù)發(fā)展的中國交通——2005全國博士生學術論壇(交通運輸工程學科)論文集(下冊)[C];2005年
4 彭麗媛;李暉;居鶴華;;崎嶇地形環(huán)境中月球車的動力學建模與仿真[A];中國自動化學會控制理論專業(yè)委員會B卷[C];2011年
5 郭洪艷;陳虹;張華玉;;車輛動力學數(shù)據(jù)/機理建模及車速估計應用[A];中國自動化學會控制理論專業(yè)委員會D卷[C];2011年
6 宋春元;羅仁;;低溫條件懸掛參數(shù)變化對動力學性能的影響研究[A];第八屆中國智能交通年會論文集[C];2013年
相關博士學位論文 前6條
1 丁建明;車輛動力學性能參數(shù)估計方法研究[D];西南交通大學;2012年
2 趙治國;車輛動力學及其非線性控制理論技術的研究[D];西北工業(yè)大學;2002年
3 吳振昕;基于總成結構的車輛動力學實時仿真方法的研究[D];吉林大學;2007年
4 李道飛;基于輪胎力最優(yōu)分配的車輛動力學集成控制研究[D];上海交通大學;2008年
5 魏春雨;模擬器中車輛動力學與六自由度平臺聯(lián)合仿真技術研究[D];浙江大學;2013年
6 苗秀娟;瞬態(tài)風荷載下的列車運行安全性研究[D];中南大學;2012年
相關碩士學位論文 前10條
1 唐玉;基于ADAMS的懸掛式單軌車輛動力學分析與側風影響研究[D];西南交通大學;2016年
2 夏迎旭;膠輪導軌電車車輛動力學性能研究[D];西南交通大學;2016年
3 孫顯營;面向對象車輛動力學系統(tǒng)建模研究及應用[D];昆明理工大學;2002年
4 梁志華;跨座式單軌車輛動力學性能評價指標體系研究[D];重慶交通大學;2015年
5 王行聰;跨座式單軌車輛動力學性能仿真分析[D];重慶交通大學;2009年
6 張慶春;車輛動力學關鍵參數(shù)辨識研究[D];華中科技大學;2007年
7 徐學進;基于駕駛模擬器的車輛動力學建模研究[D];武漢理工大學;2007年
8 蘇光磊;汽車模擬器車輛動力學仿真軟件的設計[D];哈爾濱工業(yè)大學;2010年
9 陳鵬飛;十七自由度車輛動力學仿真模型的研究[D];華中科技大學;2011年
10 王芊;基于車輛動力學的彎坡組合路段行車仿真與安全評價[D];南昌大學;2013年
本文編號:2455627
本文鏈接:http://sikaile.net/kejilunwen/qiche/2455627.html