車輛電液混合動力傳動系統(tǒng)研究
[Abstract]:In the face of the contradiction between the rapid development of China's automobile industry and environmental pollution, the pure electric vehicle (EV) with zero emission and no pollution has attracted the attention of our government. The development of new energy vehicles represented by pure electric vehicles (EV) has become an important direction of automobile industry. In the research of new energy vehicle, regenerative braking technology is one of the key technologies. However, when the pure electric vehicle starts to regenerate braking and drive, the motor will produce a very large impulse current. If the current is fed directly into the battery, it will have a great impact on the battery life. In order to solve the problem of high current charge and discharge of battery, composite energy storage system is usually used. The super capacitor has the advantages of high power density, short charge and discharge time, but its internal resistance is small, the battery is not easy to manage, and it is difficult to match the battery parameters, the security is poor, and the cost is high. There is no electrical connection between the hydraulic system and the battery in the battery hydraulic composite energy storage system, and the hydraulic system has the advantages of super capacitance, low cost and mature technology. Based on the research of braking process and compound energy storage system of pure electric vehicle, a new type of electro-hydraulic hybrid power transmission system is designed in this paper, and the parameter matching design is carried out. The control strategy of regenerative braking is formulated, the integrated modeling of the system and the joint simulation are analyzed. The main work of this paper is as follows: (1) the characteristics of the vehicle electro-hydraulic hybrid drive system with different structure are analyzed, the structure scheme of the whole vehicle transmission system suitable for this paper is determined, and the hydraulic system control loop scheme is designed. Then the parameter matching design of the key parts of the whole power transmission system is carried out by using the parameter matching method based on the cycle working condition, including the motor, the battery, Hydraulic pump / motor (quadratic element parts), accumulator and transmission, etc. (2) the dynamics of braking and wheel dynamics of the whole vehicle are analyzed, in order to maximize the recovery of braking energy under the condition of satisfying the braking safety, According to the braking regulations and dynamic conditions, the braking force distribution of front and rear axle, the threshold value of braking strength and the judging strategy of braking mode are determined. Small strength braking force distribution strategy and ABS anti-lock braking control strategy based on Fuzzy-PID. (3) based on the advantages of mathematical modeling of Matlab/simulink software, the vehicle model, motor model, battery model, control system model are established. Based on the advantages of AMEsim in hardware modeling, the friction braking system model and the hydraulic regenerative braking system model are established. The feasibility of the system is analyzed on the AMEsim-simulink platform. (4) the dynamic response and efficiency of the hydraulic regenerative braking system under the driving and braking conditions are analyzed, and the dynamic response of the hydraulic regulating unit under sinusoidal excitation is analyzed. Finally, under the condition of different road adhesion coefficient and braking strength, the proposed control strategy is simulated and analyzed on the basis of the established joint simulation model. In this paper, the design and parameter matching of vehicle electro-hydraulic hybrid drive system are carried out, and the regenerative braking control strategy for electro-hydraulic hybrid power system is put forward, which makes the hydraulic system and battery system coordinate well. It can not only avoid the influence of high current charge and discharge on the life of power battery, but also increase the driving range of pure electric vehicle. It provides a new idea for the design of regenerative braking system of pure electric vehicle and has a good application prospect.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:U463.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何仁,王憲英,王若平;混合動力傳動系統(tǒng)匹配評價指標(biāo)的探討[J];汽車技術(shù);2005年01期
2 吳光強(qiáng),鞠麗娟,羅邦杰;車輛混合動力傳動系統(tǒng)開發(fā)現(xiàn)狀與展望[J];汽車工程;1997年02期
3 何仁,孫龍林,吳明;汽車新型儲能動力傳動系統(tǒng)節(jié)能機(jī)理[J];長安大學(xué)學(xué)報(自然科學(xué)版);2002年03期
4 孫東明,項昌樂;面向?qū)ο蠼T谲囕v動力傳動系統(tǒng)中的應(yīng)用[J];車輛與動力技術(shù);2003年04期
5 吳憩棠;汽車動力傳動系統(tǒng)鑄件的浸滲技術(shù)[J];汽車與配件;2004年11期
6 王世新;徐勇;;混合動力電動汽車動力傳動系統(tǒng)的研究[J];機(jī)械研究與應(yīng)用;2005年06期
7 文孝霞;杜子學(xué);欒延龍;;汽車動力傳動系統(tǒng)匹配研究[J];重慶交通學(xué)院學(xué)報;2006年01期
8 Alexander Craig;;新型封裝技術(shù)實現(xiàn)動力傳動系統(tǒng)的智能功率化[J];世界電子元器件;2006年09期
9 趙海波;項昌樂;耿沖;孫恬恬;;履帶車輛動力傳動系統(tǒng)扭振的測試與分析[J];機(jī)械設(shè)計與制造;2007年06期
10 趙海波;項昌樂;劉輝;;車輛動力傳動系統(tǒng)扭轉(zhuǎn)振動研究的理論與方法[J];新技術(shù)新工藝;2007年04期
相關(guān)會議論文 前5條
1 何仁;王若平;王憲英;;混合動力傳動系統(tǒng)匹配評價指標(biāo)的探討[A];科技、工程與經(jīng)濟(jì)社會協(xié)調(diào)發(fā)展——中國科協(xié)第五屆青年學(xué)術(shù)年會論文集[C];2004年
2 魏來生;趙春霞;;某4X4車動力傳動系統(tǒng)扭振計算與試驗[A];全國先進(jìn)制造技術(shù)高層論壇暨第八屆制造業(yè)自動化與信息化技術(shù)研討會論文集[C];2009年
3 邵朋禮;王劍;;車輛動力傳動系統(tǒng)有限元結(jié)構(gòu)分析[A];第四屆中國CAE工程分析技術(shù)年會論文集[C];2008年
4 韓曉成;王曉娟;嵇曉霞;;汽車動力傳動系統(tǒng)的仿真分析與研究[A];第九屆中國CAE工程分析技術(shù)年會專輯[C];2013年
5 李春明;魏來生;江磊;;四輪驅(qū)動特種車輛動力傳動扭振分析計算[A];全國先進(jìn)制造技術(shù)高層論壇暨第七屆制造業(yè)自動化與信息化技術(shù)研討會論文集[C];2008年
相關(guān)重要報紙文章 前5條
1 龔春全;我國雙速比動力傳動系統(tǒng)研制取得突破[N];中國船舶報;2009年
2 唐偉;汽車動力傳動系統(tǒng)動態(tài)試驗系統(tǒng)完成[N];科技日報;2005年
3 祁培堅;通用公司公布發(fā)動機(jī)發(fā)展戰(zhàn)略[N];中國汽車報;2004年
4 李永鈞;汽車文明跑輸汽車增速[N];中國工業(yè)報;2014年
5 陳玉金 汪向榮;儀征崛起國際化動力系統(tǒng)產(chǎn)業(yè)群[N];新華日報;2006年
相關(guān)博士學(xué)位論文 前9條
1 金濤濤;混合動力傳動系統(tǒng)建模及優(yōu)化控制研究[D];北京交通大學(xué);2014年
2 陳龍安;混合動力汽車動力傳動控制系統(tǒng)的研究與開發(fā)[D];同濟(jì)大學(xué);2007年
3 趙光明;周向長弧形彈簧式雙質(zhì)量飛輪非線性扭轉(zhuǎn)減振特性研究[D];武漢理工大學(xué);2013年
4 黃粉蓮;營運(yùn)貨車動力傳動系統(tǒng)仿真及優(yōu)化[D];中國農(nóng)業(yè)大學(xué);2014年
5 孫宏圖;基于循環(huán)工況的城市公交客車動力傳動系統(tǒng)參數(shù)研究[D];大連理工大學(xué);2009年
6 王印束;基于動力傳動系統(tǒng)一體化的雙離合器自動變速器控制技術(shù)研究[D];吉林大學(xué);2012年
7 陳雷;轎車雙質(zhì)量飛輪動力特性研究[D];武漢理工大學(xué);2009年
8 李岳;機(jī)械動力傳動系統(tǒng)核基故障識別與狀態(tài)預(yù)測技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2007年
9 葉明;基于機(jī)械自動變速的輕度混合動力傳動系統(tǒng)綜合控制研究[D];重慶大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 劉強(qiáng);基于發(fā)動機(jī)激勵的汽車起步離合器接合的動力傳動系統(tǒng)扭轉(zhuǎn)振動研究[D];長安大學(xué);2015年
2 陳長勇;基于城市循環(huán)工況的天然氣城市客車動力傳動系統(tǒng)優(yōu)化匹配研究[D];長安大學(xué);2015年
3 羅輝輝;雙質(zhì)量飛輪扭轉(zhuǎn)特性及試驗研究[D];南京理工大學(xué);2015年
4 劉雪媛;高原環(huán)境下動力傳動系統(tǒng)動態(tài)過程參數(shù)匹配研究[D];北京理工大學(xué);2015年
5 余振奇;車輛動力傳動系統(tǒng)結(jié)構(gòu)動力學(xué)及敏感度分析研究[D];北京理工大學(xué);2015年
6 汪洋青;基于GT-SUITE的某SUV動力傳動系統(tǒng)優(yōu)化匹配分析[D];江西農(nóng)業(yè)大學(xué);2015年
7 路勝利;基于模型的某轎車動力傳動系統(tǒng)匹配與優(yōu)化[D];吉林大學(xué);2015年
8 崔叢學(xué);基于AVL CRUISE的某小型貨車動力傳動系統(tǒng)優(yōu)化匹配[D];青島理工大學(xué);2015年
9 楊兆銘;輪式車輛混合動力傳動系統(tǒng)設(shè)計分析及應(yīng)用[D];重慶大學(xué);2015年
10 王維;插電式四驅(qū)混合動力汽車的匹配與仿真建模[D];重慶大學(xué);2015年
,本文編號:2255654
本文鏈接:http://sikaile.net/kejilunwen/qiche/2255654.html