乘用車后扭力梁懸架系統(tǒng)動(dòng)態(tài)特性仿真與試驗(yàn)研究
[Abstract]:The interaction between the tire and the uneven road is the main source of vibration when the vehicle is moving at medium speed. The excitation force is transferred to the suspension through the tire system, and then transmitted to the body after the suspension system's cushioning and damping action, thus causing the body vibration and the vehicle interior noise. In engineering practice, it has become a universal problem that the front (FF) passenger car with rear torsion beam suspension system appears obvious noise in the course of middle and low speed driving. How to optimize the design of suspension system to improve the performance of vehicle NVH has attracted wide attention in the industry. In this paper, the rear torsion beam suspension system which is widely used in medium and low class passenger cars is taken as the research object. The dynamic characteristics of the suspension system and the vibration analysis of the whole vehicle based on the dynamic characteristics of the suspension system are deeply studied by means of the combination of simulation and test. Taking the stiffness of rubber bushing at the joint of suspension system and body as the key factor, the influence law of improving the modal distribution of suspension system and reducing the vibration response of chassis is studied. In order to reflect the inherent characteristics and vibration transfer characteristics of suspension system objectively and comprehensively, the dynamic characteristics of torsional beam suspension system are tested and analyzed, and the test modal parameters of the system are obtained. Vibration transfer function (VTF) and characteristic parameters of each elastic damping element. The acquisition of the above parameters also provides experimental data support for simulation modeling and the basis for checking the model. According to the principle of finite element, the dynamic characteristics of torsion beam suspension system are simulated and analyzed with Hyper Works software as the simulation platform, and the equivalent expression of the characteristics of each component in finite element modeling is discussed emphatically. The simplified simulation principle of each constraint boundary. The evaluation method of dynamic stiffness of rubber bushing and the method of replacing the boundary of complex tire system with iron tooling are put forward. The validity of the method is verified by the test data. Based on the above finite element model of torsional beam suspension system, the stiffness of the bushing installed at the joint of suspension and body is taken as a single variable to analyze the sensitivity of the low-order modal frequency of suspension system. The relationship between the stiffness direction of the bushing and the mode shape of the suspension system is discussed, and the variation of the modal distribution of the suspension system with the stiffness of the bushing is revealed. The results show that the first three modes of suspension system are mainly bending in Z direction and X direction, so the modal frequency is greatly affected by the stiffness variation in these two directions. In order to further reveal the relationship between the dynamic characteristics of suspension system and vehicle vibration, the modeling work of front suspension subsystem, steering subsystem, tire subsystem and vehicle body subsystem is added based on the torsion beam suspension subsystem. Build the parameterized model of the whole vehicle. On this basis, the variation of vertical vibration acceleration response of the chassis with the stiffness of the mounting bushing is discussed qualitatively, and the validity is verified by the test results of the real vehicle road. It is shown that reducing the Z-direction stiffness of the bushing direction is beneficial to the reduction of the mid-low frequency vibration in the vehicle. To sum up, the dynamic characteristics of torsional beam suspension system and the influence of key factors on the dynamic characteristics are analyzed comprehensively in this paper. At the same time, the influence of the stiffness characteristics of the bushing on the vibration of the whole vehicle is discussed, which provides guidance for the study of the vibration reduction of the road excitation transmitted to the body through the suspension system, and then improves the NVH performance of the whole vehicle.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U463.33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于增亮;張立軍;羅鷹;;一種新的橡膠襯套半經(jīng)驗(yàn)動(dòng)力學(xué)模型[J];汽車技術(shù);2010年08期
2 石少亮;吳偉蔚;黃虎;劉新田;;車用橡膠襯套的非線性有限元分析[J];機(jī)械設(shè)計(jì)與制造;2011年09期
3 周煒;黃友劍;李建林;;基于參數(shù)化有限元的橡膠襯套結(jié)構(gòu)優(yōu)化設(shè)計(jì)[J];特種橡膠制品;2012年04期
4 屈濱;載重汽車后懸掛部件——橡膠襯套[J];中國(guó)橡膠;2005年16期
5 郭孔輝;王爽;丁海濤;張建偉;;后懸架非對(duì)稱式橡膠襯套彈性耦合特性[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2007年06期
6 于增亮;張立軍;余卓平;;橡膠襯套力學(xué)特性半經(jīng)驗(yàn)參數(shù)化模型[J];機(jī)械工程學(xué)報(bào);2010年14期
7 韓傳軍;張杰;劉洋;;螺桿鉆具橡膠襯套的生熱及熱力耦合分析[J];四川大學(xué)學(xué)報(bào)(工程科學(xué)版);2012年06期
8 黃鵬程;王聰昌;陳凱;;車用橡膠襯套疲勞的有限元分析[J];橡膠工業(yè);2013年08期
9 方明霞;談軍;許光;;汽車橡膠襯套隨機(jī)疲勞分析[J];汽車工程;2013年10期
10 趙正平;耐溫耐腐蝕蝶閥橡膠襯套[J];潤(rùn)滑與密封;1989年03期
相關(guān)會(huì)議論文 前3條
1 張文飛;危銀濤;;懸架橡膠襯套靜動(dòng)態(tài)特性測(cè)試與有限元仿真[A];北京力學(xué)會(huì)第17屆學(xué)術(shù)年會(huì)論文集[C];2011年
2 苗賀;劉艷華;戴峻;;發(fā)動(dòng)機(jī)懸置橡膠襯套優(yōu)化設(shè)計(jì)[A];第十屆沈陽(yáng)科學(xué)學(xué)術(shù)年會(huì)論文集(信息科學(xué)與工程技術(shù)分冊(cè))[C];2013年
3 張?jiān)魄?項(xiàng)俊;孫營(yíng);陳立平;;基于正交試驗(yàn)的虛擬樣車平順性分析及參數(shù)選擇[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
相關(guān)重要報(bào)紙文章 前1條
1 陳伯康;夏利轎車轉(zhuǎn)方向盤時(shí)車體震擺[N];中國(guó)汽車報(bào);2002年
相關(guān)博士學(xué)位論文 前4條
1 劉偉;客車懸架橡膠襯套對(duì)整車性能影響研究與多目標(biāo)優(yōu)化[D];吉林大學(xué);2012年
2 陳寶;懸架橡膠襯套靜動(dòng)特性研究及其應(yīng)用[D];西南交通大學(xué);2014年
3 楊樹凱;橡膠襯套對(duì)懸架彈性運(yùn)動(dòng)與整車轉(zhuǎn)向特性影響的研究[D];吉林大學(xué);2008年
4 李凌陽(yáng);車輛懸架系統(tǒng)參數(shù)辨識(shí)、建模及耐久性分析優(yōu)化[D];華中科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 蘇志勇;軸對(duì)稱橡膠襯套高精度模型的建立及應(yīng)用[D];吉林大學(xué);2007年
2 石少亮;隨機(jī)振動(dòng)激勵(lì)下汽車副車架用橡膠襯套的力學(xué)特性分析[D];上海工程技術(shù)大學(xué);2011年
3 王培;汽車懸架減振器支柱總成建模與仿真研究[D];遼寧工業(yè)大學(xué);2016年
4 李欣;基于剛?cè)狁詈夏P偷钠噾壹苄阅芊治黾皟?yōu)化[D];河北工業(yè)大學(xué);2015年
5 邱實(shí);懸架橡膠襯套對(duì)汽車平順性影響的多體動(dòng)力學(xué)研究[D];北京理工大學(xué);2016年
6 王迪;基于部件特性的麥弗遜式懸架動(dòng)力學(xué)建模研究[D];吉林大學(xué);2016年
7 羅勇;客車振動(dòng)分析及橡膠襯套建模研究[D];華中科技大學(xué);2014年
8 范大力;乘用車后扭力梁懸架系統(tǒng)動(dòng)態(tài)特性仿真與試驗(yàn)研究[D];西南交通大學(xué);2016年
9 王娜;面向汽車耐久性分析的底盤橡膠襯套建模研究[D];吉林大學(xué);2011年
10 馮保進(jìn);汽車橡膠襯套模型及參數(shù)辨識(shí)方法的研究[D];吉林大學(xué);2015年
,本文編號(hào):2216251
本文鏈接:http://sikaile.net/kejilunwen/qiche/2216251.html