車用鋰離子電池管理系統(tǒng)研究
發(fā)布時間:2018-06-21 10:54
本文選題:純電動汽車 + 鋰離子電池; 參考:《安徽農(nóng)業(yè)大學》2016年碩士論文
【摘要】:能源緊缺和日益嚴重的環(huán)境污染已經(jīng)成為一個亟待解決的全球性問題。傳統(tǒng)燃油汽車的發(fā)展導致了石油資源的過度消耗,汽車尾氣的排放更是目前大氣污染的主要來源之一,在這種背景下,“零排放”的純電動汽車受到了越來越多人的關注。但是車載動力電源技術一直是制約純電動汽車發(fā)展和普及的瓶頸,同時也占了純電動汽車成本的相當大一部分。鋰離子電池雖然是目前較為理想的動力電池,但在短時間內(nèi)也不會有突破性進展,而高性能電池管理系統(tǒng)的開發(fā)則是目前打破僵局的一個突破口。論文以車用18650鋰離子電池為管理對象,在鋰離子電池管理系統(tǒng)的軟硬件設計方面主要進行了以下的工作:以額定容量3.2Ah的18650鋰離子電池為試驗對象,進行了室溫下的充放電試驗、放電容量試驗和HPPC試驗。對試驗所得數(shù)據(jù)的處理和分析,了解了試驗對象的充放電特性、開路電壓和內(nèi)阻特性。為后文內(nèi)容,尤其是SOC估計部分內(nèi)容提供了大量試驗數(shù)據(jù)。設計了以電池管理芯片BQ76PL536A-Q1和MSP430F5529單片機為核心的鋰離子電池管理系統(tǒng)。采用集成式的整體結(jié)構(gòu),將鋰離子電池管理系統(tǒng)分為主控板和采集板兩部分。主控板主要包括總電流采集模塊、液晶顯示模塊和USB通信模塊;采集板主要包括電壓采集模塊、溫度采集模塊、隔離模塊和均衡模塊。在硬件設計方案的指導下完成了PCB的繪制。對常用的SOC估算方法進行分析和比較后,確定了適用于工程的SOC估算方法:開路電壓與安時累積法相結(jié)合。對充放電倍率、溫度和老化這三個SOC估算的影響因素進行了理論分析,結(jié)合18650鋰離子電池試驗數(shù)據(jù)得出了安時累積法基于放電倍率、溫度和老化這三個影響因素的修正系數(shù)。對鋰離子電池管理系統(tǒng)的軟件進行了設計,與硬件聯(lián)合調(diào)試后實現(xiàn)了電壓監(jiān)測、電流監(jiān)測、溫度監(jiān)測,故障檢查,電池均衡和SOC估算等功能。搭建了模擬電動汽車行駛過程的放電監(jiān)測試驗平臺,以該試驗平臺為基礎進行了鋰離子電池管理系統(tǒng)的電壓監(jiān)測精度、放電監(jiān)測和均衡試驗。通過對電動汽車行駛過程的模擬,發(fā)現(xiàn)在沒有均衡系統(tǒng)參與下電池一致性將呈現(xiàn)變差的趨勢,論證了均衡的必要性和重要性。
[Abstract]:Energy shortage and increasingly serious environmental pollution have become a global problem to be solved. The development of traditional fuel vehicles leads to the excessive consumption of petroleum resources, and the emission of vehicle exhaust is one of the main sources of air pollution at present. Under this background, "zero emission" pure electric vehicles have attracted more and more attention. However, the on-board power supply technology has been a bottleneck restricting the development and popularity of pure electric vehicles, and also accounted for a large part of the cost of pure electric vehicles. Although lithium ion battery is an ideal power battery at present, it will not make a breakthrough in a short time, and the development of high performance battery management system is a breakthrough to break the deadlock. The thesis takes 18650 lithium ion battery for vehicle as the management object. The main work in the software and hardware design of the lithium ion battery management system is as follows: take the 18650 lithium ion battery with rated capacity 3.2Ah as the experimental object. Charge and discharge tests, discharge capacity tests and HPPC tests were carried out at room temperature. The charge-discharge characteristics, open circuit voltage and internal resistance characteristics of the test objects are analyzed and analyzed. It provides a lot of experimental data for later content, especially for SOC estimation. A lithium ion battery management system based on BQ76PL536A-Q1 and MSP430F5529 is designed. The lithium ion battery management system is divided into two parts: the main control board and the acquisition board. The main control board mainly includes the total current acquisition module, liquid crystal display module and USB communication module; the acquisition board mainly includes voltage acquisition module, temperature acquisition module, isolation module and equalization module. PCB drawing is completed under the guidance of hardware design. After analyzing and comparing the commonly used SOC estimation methods, the SOC estimation method suitable for engineering is determined, which is the combination of open circuit voltage and ampere-hour cumulation method. The influence factors of charge / discharge ratio, temperature and aging on SOC estimation were analyzed theoretically. Combined with the test data of 18650 lithium ion battery, the modified coefficients of amperometric cumulation method based on discharge rate, temperature and aging were obtained. The software of Li-ion battery management system is designed. After debugging with hardware, the functions of voltage monitoring, current monitoring, temperature monitoring, fault checking, battery equalization and SOC estimation are realized. A discharge monitoring test platform is built for simulating the driving process of electric vehicles. Based on the test platform, the voltage monitoring accuracy, discharge monitoring and equalization test of the lithium ion battery management system are carried out. By simulating the driving process of electric vehicle, it is found that the battery consistency will become worse without the participation of equalization system, and the necessity and importance of equalization are demonstrated.
【學位授予單位】:安徽農(nóng)業(yè)大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:U469.72
【參考文獻】
相關期刊論文 前10條
1 裴鋒;符興鋒;;基于風冷模式的18650動力電池系統(tǒng)安全性設計研究[J];汽車技術;2015年08期
2 喬旭彤;耿海洲;董峰;;集中式電動汽車電池管理系統(tǒng)設計[J];電子測量與儀器學報;2015年07期
3 鄧曄;胡越黎;滕華強;;鋰電池開路電壓的預估及SOC估算[J];儀表技術;2015年02期
4 劉謙;何明前;范世軍;李朋飛;李占鋒;;基于LTC6804的電池參數(shù)采集系統(tǒng)設計[J];工業(yè)控制計算機;2015年01期
5 鄭林鋒;姜久春;王占國;馬澤宇;馬晨;;鋰離子電池電壓在線與離線檢測設計[J];電源技術;2015年01期
6 閆金定;;鋰離子電池發(fā)展現(xiàn)狀及其前景分析[J];航空學報;2014年10期
7 辛U,
本文編號:2048365
本文鏈接:http://sikaile.net/kejilunwen/qiche/2048365.html
最近更新
教材專著