車用獨立式冷卻模塊性能評價分析與設(shè)計匹配方法研究
本文選題:流動傳熱 + CFD數(shù)值模擬 ; 參考:《浙江大學(xué)》2016年博士論文
【摘要】:目前,為了解決車用冷卻模塊空間布置矛盾,便于氣動阻力與換熱效率兩個指標之間的協(xié)同優(yōu)化,已經(jīng)把獨立式冷卻模塊技術(shù)列為重要的技術(shù)手段之一,然而對于獨立式冷卻模塊內(nèi)部流動傳熱規(guī)律及協(xié)同匹配規(guī)律的研究還處于起步階段,研究焦點還多集中在傳統(tǒng)冷卻模塊,對于新型獨立式冷卻模塊設(shè)計匹配理論還缺乏系統(tǒng)研究,對其研究多為概念設(shè)計,缺乏理論深度。本文采用數(shù)值模擬結(jié)合試驗方法研究獨立式冷卻模塊流動傳熱規(guī)律,包括風(fēng)扇與熱交換器模塊之間的匹配規(guī)律、多熱交換器之間的協(xié)同特性、性能評價參數(shù)及適用原則,形成系統(tǒng)的獨立式冷卻模塊計算分析方法和協(xié)同設(shè)計匹配理論。主要研究內(nèi)容包括:1)獨立式冷卻模塊數(shù)值模擬方法研究研究適用于車用冷卻模塊的風(fēng)扇與熱交換器數(shù)值模擬方法,提高風(fēng)扇與熱交換器的數(shù)值仿真精度,并在此基礎(chǔ)上建立由上述模型構(gòu)成的車用冷卻模塊數(shù)值仿真模型。2)獨立式冷卻模塊數(shù)值仿真模型試驗驗證建立車用獨立式冷卻模塊模擬試驗系統(tǒng),進行獨立式冷卻模塊數(shù)值模型的有效性驗證,包括獨立式冷卻模塊流動傳熱性能宏觀試驗驗證與流場可視化微觀試驗驗證。3)獨立式冷卻模塊匹配分析方法研究風(fēng)扇與單熱交換器結(jié)構(gòu)冷卻模塊匹配研究,研究兩者之間匹配參數(shù)變化對其氣動性能及匹配特性的影響;風(fēng)扇與多熱交換器串聯(lián)結(jié)構(gòu)冷卻模塊匹配研究,研究進風(fēng)口數(shù)量與相對位置對其流動傳熱性能及其匹配特性的影響;風(fēng)扇與多熱交換器并聯(lián)結(jié)構(gòu)冷卻模塊匹配研究,研究熱交換器間相對位置的改變對冷卻模塊流動傳熱性能及匹配特性的影響。4)獨立式冷卻模塊性能評價參數(shù)研究以有效阻力系數(shù)、風(fēng)扇效率、冷卻效率、冷卻模塊匹配特性曲線為評價參數(shù),對不同結(jié)構(gòu)與類型的獨立式冷卻模塊進行分析評價,評估各個評價參數(shù)的適用范圍與特性。5)獨立式冷卻模塊多熱交換器協(xié)同特性研究獨立式冷卻模塊中,多熱交換器之間流動傳熱性能的協(xié)同特性研究,包括多熱交換器串聯(lián)結(jié)構(gòu)獨立式冷卻模塊中熱交換器阻力的串聯(lián)分布規(guī)律;多熱交換器并聯(lián)結(jié)構(gòu)獨立式冷卻模塊中熱交換器阻力的并聯(lián)分布規(guī)律。研究多熱交換器之間流動傳熱的互相耦合作用及其對冷卻模塊整體性能的影響。通過以上研究得到如下結(jié)論:1)通過獨立式冷卻模塊數(shù)值模擬方法研究發(fā)現(xiàn),對于熱交換器模型,采用基于性能試驗數(shù)據(jù)的多孔介質(zhì)阻力模型,并修正多孔介質(zhì)參數(shù)之后,其數(shù)值仿真精度得到了提高。對于風(fēng)扇模型,當葉片表面結(jié)合壁面函數(shù)進行粗糙度修正之后,其仿真結(jié)果更接近試驗值。2)通過宏觀性能試驗研究發(fā)現(xiàn),熱交換器氣動阻力試驗值與仿真值吻合較好;通過微觀流場可視化試驗研究發(fā)現(xiàn),冷卻模塊內(nèi)部風(fēng)速瞬態(tài)變化周期、熱交換器入口表面速度分布及冷卻模塊內(nèi)部渦流區(qū)與試驗測量結(jié)果都較為吻合,從而驗證了冷卻模塊數(shù)值模型的有效性。3)通過單熱交換器結(jié)構(gòu)獨立式冷卻模塊匹配參數(shù)的數(shù)值仿真研究發(fā)現(xiàn),當風(fēng)扇與熱交換器之間存在一定的相對角度以及相對面積比時,冷卻模塊具有最佳氣動性能,因而提出了包含風(fēng)扇與熱交換器阻力特性匹配與相對位置匹配的雙重匹配方法。4)通過多熱交換器串聯(lián)結(jié)構(gòu)獨立式冷卻模塊數(shù)值仿真研究發(fā)現(xiàn),改變冷卻模塊進風(fēng)口數(shù)量與相對位置可以優(yōu)化冷卻模塊性能,但決定因素是風(fēng)扇與熱交換器模塊之間的匹配特性。另外,研究還發(fā)現(xiàn)冷卻模塊內(nèi)部各熱交換器流動與傳熱互相耦合,前排熱交換器對于后排熱交換器傳熱性能的抑制十分明顯。5)通過對多熱交換器并聯(lián)結(jié)構(gòu)獨立式冷卻模塊的數(shù)值仿真分析發(fā)現(xiàn),當熱交換器對置布置時,冷卻模塊具有最佳的流動傳熱性能,且各熱交換器之間具有流動協(xié)同特性,可以通過改變熱交換器間的相對尺寸實現(xiàn)熱交換器氣側(cè)流量的主動控制。6)通過對各種結(jié)構(gòu)與類型的獨立式冷卻模塊的評價分析,發(fā)現(xiàn)有效阻力系數(shù)適用于評價熱交換器與冷卻模塊之間的匹配完善程度;風(fēng)扇效率適用于評價冷卻模塊功耗;風(fēng)扇與熱交換器匹配曲線適用于評價風(fēng)扇與不同結(jié)構(gòu)熱交換器模塊之間的匹配合理性,而冷卻效率適用于評價冷卻模塊效能。因而,對于冷卻模塊的評價分析要結(jié)合各類評價參數(shù)綜合進行。
[Abstract]:At present, in order to solve the contradiction between the space layout of the vehicle cooling module and the synergistic optimization between the two indexes of aerodynamic drag and heat transfer efficiency, the independent cooling module technology has been listed as one of the important technical means. However, the research on the internal flow and heat transfer rules and the coordination matching law of the independent cooling module is still in the initial stage. The research focus is mostly focused on the traditional cooling module, and the design matching theory of the new independent cooling module is still lack of systematic research. The research is mostly conceptual design and lack of theoretical depth. In this paper, numerical simulation combined with experimental method is used to study the flow and heat transfer of independent cooling module, including the fan and heat exchanger module. The matching law, the coordination characteristics between the multi heat exchangers, the performance evaluation parameters and the applicable principles, the independent cooling module calculation and analysis method and the cooperative design matching theory are formed. The main research contents include: 1) the research on the numerical simulation method of the independent cooling module is suitable for the fan and heat transfer of the vehicle cooling module. The numerical simulation accuracy of the fan and heat exchanger is improved by the numerical simulation method. On this basis, a numerical simulation model.2 of the vehicle cooling module, composed of the above model, is established. The independent cooling module simulation model test system is established for the independent cooling module simulation test system for the independent cooling module, and the independent cooling module value is carried out. The validity of the model is verified, including the macro test verification of the flow and heat transfer performance of the independent cooling module and the flow field visualization microtest verification.3) independent cooling module matching analysis method to study the matching of the cooling module of the fan and the single heat exchanger, and study the aerodynamic performance and matching characteristics of the change of the matching parameters between the two. The influence of the cooling module matching of the fan and the multi heat exchanger in series is studied, and the influence of the inlet number and relative position on the flow and heat transfer performance and its matching characteristics is studied. The cooling module matching of the fan and the multi heat exchanger parallel structure is studied, and the heat transfer performance of the cooling module is studied by the change of the phase counterposition between the heat exchanger and the heat exchanger. The influence of matching characteristics.4) the performance evaluation parameters of independent cooling module are studied with effective resistance coefficient, fan efficiency, cooling efficiency, cooling module matching characteristic curve as evaluation parameters, independent cooling module of different structures and types, evaluation of the application range and characteristics of each evaluation parameter.5) independent cooling die Research on synergistic characteristics of block multi heat exchanger in independent cooling module, the research on the coordination characteristics of flow heat transfer performance between multi heat exchangers, including the series distribution of heat exchanger resistance in the multi heat exchanger series structure independent cooling module, and the parallel resistance of the multi heat exchanger in the single vertical cooling module. The interaction of flow and heat transfer between multi heat exchanger and its influence on the overall performance of the cooling module are studied. The following conclusions are obtained: 1) through the numerical simulation method of the independent cooling module, it is found that for the heat exchanger model, the porous medium resistance model based on the performance test data is used. After modifying the parameters of the porous medium, the precision of numerical simulation is improved. For the fan model, the simulation results are closer to the test value.2 after the surface function of the blade surface is combined with the wall surface function. It is found that the aerodynamic drag force test value of the heat exchanger is in good agreement with the simulation value; through the micro flow, the temperature of the heat exchanger is in good agreement with the simulation value; through the micro flow, the flow of the heat exchanger is in good agreement with the simulation value. The field visualization test found that the transient change period of the internal wind speed in the cooling module, the velocity distribution on the inlet surface of the heat exchanger and the internal eddy current zone of the cooling module are in good agreement with the test results, and the validity of the cooling module's validity.3) is verified by the number of the matching parameters of the independent cooling module of the single heat exchanger. The value simulation study shows that when there is a certain relative angle and relative area ratio between the fan and the heat exchanger, the cooling module has the best aerodynamic performance. Therefore, a double matching method, which includes the matching of the resistance characteristics of the fan and the heat exchanger and the relative position matching between the fan and the heat exchanger,.4) is put forward by the multi heat exchanger series structure independent cooling die. In the block numerical simulation study, it is found that changing the number and relative position of the inlet of the cooling module can optimize the performance of the cooling module, but the determining factor is the matching characteristic between the fan and the heat exchanger module. In addition, it is found that the heat exchanger is coupled with the heat transfer in the cooling module, and the front row heat exchanger is used for the back heat exchanger. The suppression of heat transfer performance is very obvious.5) through the numerical simulation analysis of the parallel structure independent cooling module of the multi heat exchanger, it is found that the cooling module has the best flow and heat transfer performance when the heat exchanger is disposed and the heat exchanger has the flow synergistic characteristics between the heat exchangers, and the relative size between the heat exchangers can be changed by changing the relative size. The active control of the air side flow of the current heat exchanger.6) through the evaluation and analysis of the independent cooling module of various structures and types, it is found that the effective resistance coefficient is suitable for evaluating the matching perfection between the heat exchanger and the cooling module. The fan efficiency is suitable for evaluating the power consumption of the cooling module, and the matching curve of the fan and heat exchanger is applicable. The rationality of the matching between the fan and the different structure heat exchanger modules is evaluated, and the cooling efficiency is suitable for evaluating the efficiency of the cooling module. Therefore, the evaluation and analysis of the cooling module should be combined with various evaluation parameters.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:U464.138
【參考文獻】
相關(guān)期刊論文 前9條
1 倪計民;沈凱;朱黎明;徐錦華;徐向陽;;后置發(fā)動機客車整車環(huán)境下冷卻模塊性能分析[J];汽車技術(shù);2013年10期
2 沈凱;徐錦華;朱黎明;陳泓;倪計民;;發(fā)動機冷卻模塊安裝參數(shù)對氣動性能的影響[J];內(nèi)燃機工程;2013年01期
3 劉佳鑫;秦四成;孔維康;張奧;習(xí)羽;張學(xué)林;;虛擬風(fēng)洞下車輛散熱器模塊傳熱性能數(shù)值仿真[J];吉林大學(xué)學(xué)報(工學(xué)版);2012年04期
4 張坤;王玉璋;楊小玉;;應(yīng)用CFD方法改善發(fā)動機艙散熱性能[J];汽車工程;2011年04期
5 袁兆成;朱晴;王吉;王宏志;常賀;;汽車管帶式散熱器仿真設(shè)計方法的研究[J];內(nèi)燃機工程;2011年02期
6 上官文斌;王益有;吳敏;劉敦綠;;基于無量綱性能曲線的發(fā)動機冷卻風(fēng)扇設(shè)計方法[J];汽車工程;2010年05期
7 袁俠義;谷正氣;楊易;袁志群;姜樂華;蘇偉;;汽車發(fā)動機艙散熱的數(shù)值仿真分析[J];汽車工程;2009年09期
8 索文超;畢小平;李賀佳;;車用散熱器空氣流動阻力預(yù)測研究[J];汽車工程;2008年09期
9 鮑積潤,畢小平;坦克動力艙空氣流動與傳熱影響因素的仿真研究[J];裝甲兵工程學(xué)院學(xué)報;2005年01期
相關(guān)博士學(xué)位論文 前3條
1 呂鋒;商用車冷卻模塊匹配設(shè)計方法研究[D];浙江大學(xué);2011年
2 黃鈺期;基于場協(xié)同原理的車用冷卻系統(tǒng)流動傳熱耦合分析與結(jié)構(gòu)優(yōu)化[D];浙江大學(xué);2010年
3 張毅;車輛散熱器模塊流動與傳熱問題的數(shù)值分析與試驗研究[D];浙江大學(xué);2006年
,本文編號:1967308
本文鏈接:http://sikaile.net/kejilunwen/qiche/1967308.html