電動(dòng)汽車電池管理系統(tǒng)電磁兼容性分析與設(shè)計(jì)
本文選題:電池管理系統(tǒng) + 電磁兼容; 參考:《吉林大學(xué)》2016年碩士論文
【摘要】:汽車工業(yè)是我國(guó)經(jīng)濟(jì)發(fā)展的支柱性產(chǎn)業(yè),對(duì)國(guó)民經(jīng)濟(jì)的發(fā)展至關(guān)重要,汽車給民眾的生活帶來(lái)了極大的便利。在汽車工業(yè)飛速發(fā)展的同時(shí),能源危機(jī)和污染問題也日趨嚴(yán)重。因此,近年來(lái)世界各國(guó)汽車廠商紛紛投入大量人力財(cái)力用于新能源汽車的研制和開發(fā)。由于電動(dòng)汽車“零污染、零排放”的優(yōu)點(diǎn),我國(guó)將電動(dòng)汽車作為當(dāng)前新能源汽車發(fā)展的重點(diǎn)。電池管理系統(tǒng)作為管理整車電池組的關(guān)鍵器件,良好的穩(wěn)定性和精確的數(shù)據(jù)采集可以使電動(dòng)汽車具備更長(zhǎng)的續(xù)航里程、更高的安全性和更準(zhǔn)確的荷電狀態(tài)SOC(State of Charge)估算。由DC/AC電機(jī)逆變器和DC/DC直流變換器構(gòu)成的電動(dòng)汽車動(dòng)力系統(tǒng)開關(guān)頻率高,電流大,在汽車內(nèi)部形成很強(qiáng)的電磁干擾EMI(Electro-magnetic Interference),很容易造成BMS誤報(bào)警或參數(shù)采集不準(zhǔn)確,影響電動(dòng)汽車的穩(wěn)定運(yùn)行。通過電磁兼容性研究,可以有效的改善電池管理系統(tǒng)的輻射發(fā)射、輻射抗擾、傳導(dǎo)發(fā)射和傳導(dǎo)抗擾,保證了系統(tǒng)參數(shù)采集的精度和安全運(yùn)行,因此進(jìn)行電池管理系統(tǒng)電磁兼容性設(shè)計(jì)有著非常重要的工程實(shí)用價(jià)值。論文基于電池管理系統(tǒng)的開發(fā),從電池管理系統(tǒng)電磁兼容理論研究、電池管理系統(tǒng)電源線傳導(dǎo)和輻射干擾建模仿真和電池管理系統(tǒng)電磁兼容性試驗(yàn)分析三方面展開。電磁兼容理論研究包括線束輻射發(fā)射理論研究、傳導(dǎo)干擾理論研究以及線束間的串?dāng)_理論研究。線束輻射發(fā)射研究通過將線束中的電流分為共模和差模電流分別研究,確定共模電流為造成輻射發(fā)射的主要原因。傳導(dǎo)干擾研究將直流電機(jī)驅(qū)動(dòng)回路作為研究對(duì)象進(jìn)行建模,通過對(duì)模型的計(jì)算得到引起傳導(dǎo)干擾的共模電壓和共模電流。線束間的串?dāng)_以單線對(duì)CAN總線的干擾為研究對(duì)象,建立單線和CAN總線串?dāng)_的模型并計(jì)算參數(shù)矩陣,通過電路分析得到CAN總線的近端電壓傳輸比。最后利用理論研究改進(jìn)硬件電路的電磁兼容性。BMS電源線仿真包括傳導(dǎo)和輻射發(fā)射建模,模型主要依據(jù)汽車零部件電磁兼容測(cè)試標(biāo)準(zhǔn)要求的試驗(yàn)條件在CST軟件中建立,仿真得到傳導(dǎo)和輻射發(fā)射特性。同時(shí),針對(duì)CAN總線的串?dāng)_進(jìn)行了仿真。試驗(yàn)部分包括BMS+12V電源線的傳導(dǎo)發(fā)射和輻射發(fā)射,BMS數(shù)據(jù)采集模塊的傳導(dǎo)抗擾度和輻射抗擾度測(cè)試。通過分析試驗(yàn)數(shù)據(jù),確定了由于電磁干擾引起的設(shè)備故障機(jī)制。
[Abstract]:Automobile industry is the pillar industry of economic development in our country, which is very important to the development of national economy, and it brings great convenience to people's life. With the rapid development of automobile industry, energy crisis and pollution problems are becoming more and more serious. Therefore, in recent years, automobile manufacturers all over the world have invested a lot of human and financial resources in the research and development of new energy vehicles. Due to the advantages of "zero pollution and zero emission" of electric vehicles, electric vehicles are regarded as the focus of the development of new energy vehicles in China. The battery management system is the key device for managing the battery pack of the whole vehicle. Good stability and accurate data acquisition can enable the electric vehicle to have longer range, higher safety and more accurate SOC(State of charge estimation. The electric vehicle power system composed of DC/AC motor inverter and DC/DC DC / DC converter has high switching frequency and large current, and forms a strong electromagnetic interference (EMI(Electro-magnetic) interference in the automobile. It is easy to cause BMS false alarm or inaccurate parameter acquisition. Affect the stable operation of electric vehicles. Through the study of electromagnetic compatibility, it can effectively improve the radiation emission, radiation immunity, conduction emission and conduction immunity of the battery management system, and ensure the precision and safe operation of the system parameter collection. Therefore, EMC design of battery management system has very important practical value. Based on the development of the battery management system, this paper starts from three aspects: the theory of EMC, the modeling and simulation of the power line conduction and radiation interference of the battery management system, and the EMC test analysis of the battery management system. EMC theory research includes radiation emission theory of wire beam, conduction interference theory and crosstalk theory between wire bundles. By dividing the current into common mode and differential mode current, the common mode current is the main cause of radiation emission. The DC motor driving circuit is used as the research object in the study of conduction interference, and the common mode voltage and common mode current which cause the conduction interference are obtained by the calculation of the model. The crosstalk between wire bundles takes the interference of single wire to CAN bus as the research object. The model of crosstalk between single wire and CAN bus is established and the parameter matrix is calculated. The near terminal voltage transfer ratio of CAN bus is obtained by circuit analysis. Finally, using the theory to study and improve the EMC. BMS power line simulation of the hardware circuit, including the modeling of conduction and radiation emission, the model is mainly established in CST software according to the test conditions required by the EMC test standard of automobile parts. The conduction and radiation emission characteristics are obtained by simulation. At the same time, the crosstalk of CAN bus is simulated. The test part includes the test of conduction immunity and radiation immunity of data acquisition module of BMS 12V power line. By analyzing the test data, the failure mechanism of the equipment caused by electromagnetic interference is determined.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U469.72
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Jon Titus;應(yīng)對(duì)電池管理的挑戰(zhàn)[J];電子產(chǎn)品世界;2004年10期
2 盧林;;電池管理設(shè)計(jì)及發(fā)展趨勢(shì)[J];電子測(cè)試;2007年12期
3 Douglas L.Chaffee;便攜設(shè)備的電池管理解決方案[J];今日電子;2005年04期
4 Douglas L.Chaffee;便攜式設(shè)備的電池管理解決方案[J];電子與電腦;2005年04期
5 彭懷東;;艾默生iTrust UL33 UPS電池管理方案[J];電源世界;2006年01期
6 吳明;電池管理功能標(biāo)準(zhǔn)新動(dòng)向——智能電池何去何從[J];世界電子元器件;1997年07期
7 Joshua Israelsohn;;電池管理技術(shù)漫談[J];電子設(shè)計(jì)技術(shù);2001年05期
8 孔文;;面向電動(dòng)汽車應(yīng)用的電池管理技術(shù)設(shè)計(jì)思考[J];集成電路應(yīng)用;2010年12期
9 ;安森美半導(dǎo)體推出便攜產(chǎn)品電池管理應(yīng)用場(chǎng)效應(yīng)管[J];電子工程師;2002年11期
10 Odd Jostein Svendsli;;電池管理應(yīng)用中精確測(cè)量和溫度穩(wěn)定的重要性[J];今日電子;2010年01期
相關(guān)重要報(bào)紙文章 前7條
1 記者 馬霞;我國(guó)航空級(jí)電池管理取得突破[N];科技日?qǐng)?bào);2012年
2 本報(bào)記者 陳炳欣;電池管理IC突出快、精、小[N];中國(guó)電子報(bào);2013年
3 萬(wàn)林;加強(qiáng)電池管理IC技術(shù)開發(fā)[N];中國(guó)電子報(bào);2013年
4 ;更靈活 更專業(yè)[N];計(jì)算機(jī)世界;2002年
5 梁銘先;構(gòu)筑安全供電系統(tǒng)[N];計(jì)算機(jī)世界;2006年
6 ;為應(yīng)用而誕生[N];網(wǎng)絡(luò)世界;2004年
7 劉穎華;廣西聯(lián)通解決山區(qū)基站供電巧創(chuàng)新[N];人民郵電;2005年
相關(guān)碩士學(xué)位論文 前7條
1 孫豪賽;純電動(dòng)汽車電池管理系統(tǒng)關(guān)鍵技術(shù)研究與設(shè)計(jì)[D];天津理工大學(xué);2015年
2 陳健;電動(dòng)汽車電池管理系統(tǒng)電磁兼容性分析與設(shè)計(jì)[D];吉林大學(xué);2016年
3 張勇才;數(shù)據(jù)存儲(chǔ)設(shè)備中鋰電池管理與監(jiān)控系統(tǒng)的研究[D];重慶大學(xué);2012年
4 盛大雙;基于CCP協(xié)議的電池管理標(biāo)定系統(tǒng)研究[D];北京交通大學(xué);2009年
5 吳清宇;HEV電池管理系統(tǒng)建模仿真及設(shè)計(jì)開發(fā)的研究[D];北京交通大學(xué);2008年
6 楊春雷;電動(dòng)汽車電池管理系統(tǒng)關(guān)鍵技術(shù)的研究[D];哈爾濱工業(yè)大學(xué);2011年
7 張術(shù);電動(dòng)汽車電池管理系統(tǒng)軟件設(shè)計(jì)與SOC估算策略研究[D];天津大學(xué);2007年
,本文編號(hào):1800698
本文鏈接:http://sikaile.net/kejilunwen/qiche/1800698.html