斜盤(pán)式空調(diào)壓縮機(jī)振動(dòng)噪聲仿真分析與試驗(yàn)研究
本文關(guān)鍵詞: 斜盤(pán)式壓縮機(jī) 機(jī)械噪聲 流體噪聲 約束模態(tài) 減振降噪 臺(tái)架試驗(yàn) 出處:《吉林大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著我國(guó)經(jīng)濟(jì)的快速發(fā)展,家用轎車走進(jìn)了千家萬(wàn)戶,人們對(duì)汽車的要求也越來(lái)越高,可以改善車內(nèi)乘坐條件的空調(diào)系統(tǒng)已經(jīng)成為人們購(gòu)選汽車時(shí)必不可少的一部分。但汽車空調(diào)壓縮機(jī)作為空調(diào)系統(tǒng)中最主要的部分,同時(shí)也引入了另一個(gè)不可忽視的問(wèn)題——振動(dòng)噪聲。因此降低壓縮機(jī)的振動(dòng)噪聲對(duì)于提高車內(nèi)乘坐舒適性是重要的一環(huán)。壓縮機(jī)早期的研究都集中在制冷量和使用壽命等直接影響壓縮機(jī)使用性能上,然而近年來(lái)人們對(duì)舒適性的要求進(jìn)一步提高,壓縮機(jī)的振動(dòng)噪聲問(wèn)題越來(lái)越受到人們的關(guān)注。因此對(duì)壓縮機(jī)振動(dòng)噪聲進(jìn)行分析和優(yōu)化是很有指導(dǎo)意義的,同時(shí)也可以對(duì)其他旋轉(zhuǎn)機(jī)械和空氣動(dòng)力性設(shè)備的振動(dòng)噪聲問(wèn)題提供借鑒。本文主要以當(dāng)前應(yīng)用最廣泛的斜盤(pán)式空調(diào)壓縮機(jī)為例對(duì)其振動(dòng)噪聲進(jìn)行研究。首先,介紹了汽車空調(diào)系統(tǒng)的制冷循環(huán)過(guò)程以及十缸斜盤(pán)式壓縮機(jī)結(jié)構(gòu)和工作原理。并由此著重分析了壓縮機(jī)的振動(dòng)噪聲產(chǎn)生機(jī)理,對(duì)其噪聲從產(chǎn)生原因上分為機(jī)械噪聲、流體噪聲以及電磁噪聲三類。其中機(jī)械噪聲和流體噪聲是影響最大的噪聲源。同時(shí)針對(duì)不同的噪聲形式提出相對(duì)應(yīng)的控制原理。其次分別對(duì)壓縮機(jī)及其支撐系統(tǒng)的模態(tài)以及壓縮機(jī)內(nèi)部流場(chǎng)噪聲進(jìn)行了仿真。對(duì)壓縮機(jī)及其支撐系統(tǒng)模態(tài)仿真部分,是對(duì)其進(jìn)行約束模態(tài)的計(jì)算。結(jié)果為計(jì)算得到的第一階模態(tài)較小,在怠速情況下極易發(fā)生共振。對(duì)壓縮機(jī)內(nèi)部流場(chǎng)分析部分,根據(jù)壓縮機(jī)空腔模型進(jìn)行內(nèi)部流場(chǎng)有限元模型,得到其流場(chǎng)噪聲分布情況。然后介紹了壓縮機(jī)及其支撐的模態(tài)試驗(yàn)和臺(tái)架噪聲試驗(yàn)。前者是在壓縮機(jī)安車狀態(tài)下使用敲擊法來(lái)進(jìn)行的,得到壓縮機(jī)及其支撐的一階模態(tài)為與計(jì)算得到結(jié)果相近,驗(yàn)證了模態(tài)計(jì)算的準(zhǔn)確性。后者是在半消聲室內(nèi)由電機(jī)驅(qū)動(dòng),測(cè)量壓縮機(jī)的近場(chǎng)噪聲,得到怠速工況下對(duì)應(yīng)的近場(chǎng)噪聲與流場(chǎng)計(jì)算噪聲相近,從而驗(yàn)證了流體噪聲仿真的準(zhǔn)確性。最后根據(jù)仿真結(jié)果及試驗(yàn)分析,從機(jī)械噪聲和流體噪聲兩方面進(jìn)行改進(jìn)。在機(jī)械噪聲改進(jìn)方面,著重對(duì)壓縮機(jī)支撐的結(jié)構(gòu)進(jìn)行改進(jìn),使壓縮機(jī)及其支撐系統(tǒng)的一階固有頻率得到顯著提高,避免了汽車怠速時(shí)壓縮機(jī)共振的發(fā)生,同時(shí)將支架的質(zhì)量減小,滿足了輕量化要求。在流體噪聲方面討論了對(duì)壓縮機(jī)的排氣部位結(jié)構(gòu)改進(jìn)、增大氣缸排氣口直徑、增大氣缸長(zhǎng)度以及改進(jìn)一側(cè)排氣腔厚度并增大與氣道連接的橫截面積等方案逐一分析,確定最終改進(jìn)方案,最終得到比較好的改進(jìn)效果。
[Abstract]:With the rapid development of our country's economy, household cars have entered thousands of households, people's requirements for cars are also becoming higher and higher. The air conditioning system which can improve the riding conditions in the car has become an essential part of the purchase of cars, but the air conditioning compressor is the most important part of the air conditioning system. At the same time, another problem that can not be ignored is introduced. Therefore, reducing the vibration and noise of the compressor is an important link to improve the ride comfort in the car. The service life of the compressor directly affects the performance of the compressor. However, in recent years, the demand for comfort has been further improved, and the problem of compressor vibration and noise has attracted more and more attention. Therefore, it is very instructive to analyze and optimize the vibration and noise of compressor. At the same time it can also be used for reference to the vibration and noise of other rotating machinery and aerodynamic equipment. This paper mainly takes the most widely used tilted disc air conditioning compressor as an example to study its vibration and noise. First of all. This paper introduces the refrigeration cycle process of automobile air conditioning system, the structure and working principle of ten cylinder oblique disc compressor, and analyzes emphatically the mechanism of vibration and noise generation of compressor. The noise is divided into mechanical noise from the causes. Fluid noise and electromagnetic noise are three kinds of noise, among which mechanical noise and fluid noise are the most important noise sources. At the same time, the corresponding control principle is put forward for different noise forms. Secondly, the compressor and its supporting system are separately analyzed. The modal of compressor and its supporting system are simulated. The result is that the first order mode is small, and resonance is easy to occur in idle condition. The flow field analysis part of compressor is given. According to the compressor cavity model, the finite element model of internal flow field is carried out. The noise distribution of the flow field is obtained. Then the modal test of the compressor and its support and the bench noise test are introduced. The former is carried out by tapping method under the condition of compressor installation. The results of the first order mode of compressor and its support are similar to those obtained by the calculation, which verifies the accuracy of modal calculation, which is driven by motor in the semi-silencing chamber to measure the near-field noise of the compressor. It is obtained that the corresponding near-field noise under idle condition is close to the calculated noise of flow field, which verifies the accuracy of fluid noise simulation. Finally, according to the simulation results and experimental analysis. In terms of mechanical noise and fluid noise, the structure of compressor support has been improved, so that the first order natural frequency of compressor and its supporting system has been improved significantly. The resonance of compressor is avoided and the mass of support is reduced to meet the requirement of lightweight. The structure improvement of exhaust part of compressor is discussed in the aspect of fluid noise. By increasing the diameter of the exhaust port of the cylinder, increasing the length of the cylinder, improving the thickness of the side exhaust chamber and increasing the cross-sectional area between the side exhaust chamber and the port, the final improvement scheme is determined and the improvement effect is obtained.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U463.851
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 潘旭初;;解決4135機(jī)型船振動(dòng)噪聲的措施[J];江蘇船舶;1984年01期
2 范淳;有限元技術(shù)在預(yù)測(cè)發(fā)動(dòng)機(jī)振動(dòng)噪聲中的應(yīng)用[J];天津汽車;2003年06期
3 陳光冶,趙玫,周海亭;機(jī)械振動(dòng)噪聲綜合性實(shí)驗(yàn)課的革新[J];實(shí)驗(yàn)室研究與探索;2003年06期
4 韓忠東;李麗;楊鋒杰;翟培合;陳槞;陳棋福;李綱;;運(yùn)行列車所引發(fā)的振動(dòng)噪聲分析及其可用性探索[J];噪聲與振動(dòng)控制;2007年03期
5 闞磊;江志林;;某型發(fā)動(dòng)機(jī)振動(dòng)噪聲的理論模態(tài)分析研究[J];科技信息;2013年19期
6 黃國(guó)治;曾兆炎;羅麥;;電機(jī)振動(dòng)噪聲的研究(一)[J];中小型電機(jī);1984年03期
7 王慶春;同步電機(jī)的磁振動(dòng)噪聲和控制措施[J];電工技術(shù)雜志;1990年01期
8 黃永和;;降低振動(dòng)噪聲技術(shù)的現(xiàn)狀與今后的課題[J];國(guó)外汽車;1990年04期
9 張惠敏;降低拖拉機(jī)傳動(dòng)系振動(dòng)噪聲的研究[J];江蘇工學(xué)院學(xué)報(bào);1991年04期
10 葛蘊(yùn)珊;梁杰;黎蘇;黎志勤;;柴油機(jī)振動(dòng)噪聲的動(dòng)態(tài)特性研究[J];柴油機(jī);1993年06期
相關(guān)會(huì)議論文 前8條
1 葛輝良;白琳瑯;張自麗;;基于振動(dòng)噪聲波數(shù)譜模型的降噪結(jié)構(gòu)設(shè)計(jì)方法研究[A];第十一屆船舶水下噪聲學(xué)術(shù)討論會(huì)論文集[C];2007年
2 段鴻杰;王龍;童志遠(yuǎn);;振動(dòng)噪聲技術(shù)應(yīng)用于故障診斷領(lǐng)域綜述[A];2005年全國(guó)機(jī)械可靠性學(xué)術(shù)交流會(huì)暨“車輛與工程裝備質(zhì)量與可靠性論壇”論文集[C];2005年
3 繆旭弘;王雪仁;賈地;靳國(guó)永;龐福振;;大型復(fù)雜圓柱殼中高頻振動(dòng)噪聲仿真計(jì)算方法研究[A];中國(guó)計(jì)算力學(xué)大會(huì)'2010(CCCM2010)暨第八屆南方計(jì)算力學(xué)學(xué)術(shù)會(huì)議(SCCM8)論文集[C];2010年
4 胡昆鵬;張宗杰;黃民備;劉少?gòu)?;柴油機(jī)瞬態(tài)工況振動(dòng)噪聲的測(cè)量和分析[A];面向制造業(yè)的自動(dòng)化與信息化技術(shù)創(chuàng)新設(shè)計(jì)的基礎(chǔ)技術(shù)——2001年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)暨第九屆全國(guó)特種加工學(xué)術(shù)年會(huì)論文集[C];2001年
5 李志遠(yuǎn);;某樓頂空調(diào)系統(tǒng)振動(dòng)噪聲分析與控制[A];中國(guó)聲學(xué)學(xué)會(huì)2002年全國(guó)聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2002年
6 黎勝;;流體加載作用下結(jié)構(gòu)振動(dòng)噪聲響應(yīng)分析的模態(tài)模型研究(英文)[A];第七屆海峽兩岸工程力學(xué)研討會(huì)論文摘要集[C];2011年
7 黃洋清;;低頻振動(dòng)噪聲致病機(jī)理及防治現(xiàn)狀分析研究[A];第十四屆中國(guó)科協(xié)年會(huì)第17分會(huì)場(chǎng):環(huán)境危害與健康防護(hù)研討會(huì)論文集[C];2012年
8 李保慶;劉亞明;陳云國(guó);李川奇;;VDM1200驅(qū)動(dòng)橋振動(dòng)噪聲檢測(cè)系統(tǒng)[A];制造業(yè)與未來(lái)中國(guó)——2002年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2002年
相關(guān)重要報(bào)紙文章 前1條
1 記者 張銀炎;全船振動(dòng)噪聲綜合控制技術(shù)及應(yīng)用項(xiàng)目通過(guò)鑒定[N];中國(guó)船舶報(bào);2010年
相關(guān)博士學(xué)位論文 前1條
1 奚佳欣;柴油發(fā)動(dòng)機(jī)正時(shí)鏈系統(tǒng)噪聲源識(shí)別及振動(dòng)噪聲特性研究[D];吉林大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 張國(guó)良;冰箱振動(dòng)噪聲綜合測(cè)試系統(tǒng)研究[D];昆明理工大學(xué);2015年
2 王曉翠;溝槽型織構(gòu)化表面對(duì)摩擦振動(dòng)噪聲影響的試驗(yàn)及有限元分析[D];西南交通大學(xué);2015年
3 韓光旭;高速列車車輪非圓化對(duì)振動(dòng)噪聲的影響及演變規(guī)律研究[D];西南交通大學(xué);2015年
4 張曉軼;隨機(jī)調(diào)制策略對(duì)永磁同步電機(jī)振動(dòng)噪聲影響[D];沈陽(yáng)工業(yè)大學(xué);2016年
5 劉興恕;混合動(dòng)力電動(dòng)汽車(HEV)車內(nèi)振動(dòng)噪聲分析研究[D];天津職業(yè)技術(shù)師范大學(xué);2016年
6 周海濤;動(dòng)車組頭車振動(dòng)噪聲計(jì)算分析[D];北京交通大學(xué);2016年
7 張國(guó)慶;VSV300旋片真空泵排氣和機(jī)械振動(dòng)噪聲的數(shù)值模擬及優(yōu)化設(shè)計(jì)[D];東北大學(xué);2014年
8 耿玉芝;滾輪機(jī)構(gòu)振動(dòng)噪聲分析與控制[D];江蘇大學(xué);2016年
9 何邦穎;斜盤(pán)式空調(diào)壓縮機(jī)振動(dòng)噪聲仿真分析與試驗(yàn)研究[D];吉林大學(xué);2016年
10 林傳勇;國(guó)產(chǎn)高速動(dòng)車組客室與司機(jī)室振動(dòng)噪聲優(yōu)化對(duì)比研究[D];北京交通大學(xué);2012年
,本文編號(hào):1478303
本文鏈接:http://sikaile.net/kejilunwen/qiche/1478303.html