基于虛擬現(xiàn)實(shí)的駕駛模擬仿真系統(tǒng)開(kāi)發(fā)
本文關(guān)鍵詞:基于虛擬現(xiàn)實(shí)的駕駛模擬仿真系統(tǒng)開(kāi)發(fā) 出處:《重慶大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 駕駛模擬仿真 CarSim 虛擬現(xiàn)實(shí) 實(shí)時(shí)系統(tǒng) LabVIEW
【摘要】:汽車是人機(jī)協(xié)調(diào)控制的復(fù)雜系統(tǒng),要對(duì)汽車進(jìn)行控制仿真,就必須考慮到人的因素,必須考慮真實(shí)道路的影響。于是,結(jié)合人車路三者進(jìn)行汽車系統(tǒng)仿真是非常必要的。而要進(jìn)行人車路層面的仿真,就必須依賴于更加全面的仿真系統(tǒng),傳統(tǒng)HIL仿真架構(gòu)已經(jīng)不足以擔(dān)當(dāng)此仿真任務(wù)。本文引入了人的因素,進(jìn)行H2IL仿真,而駕駛模擬仿真系統(tǒng)就是基于H2IL車輛仿真的一種形式。車輛駕駛模擬仿真系統(tǒng)是進(jìn)行汽車工程研究的重要工具和手段,其最主要的性能指標(biāo)是沉浸性。為了實(shí)現(xiàn)于駕駛員而言良好的沉浸效果,就要求駕駛模擬器的車輛動(dòng)力學(xué)模型足夠準(zhǔn)確,解算結(jié)果接近真實(shí)物理世界。其顯示系統(tǒng)、聲覺(jué)模擬系統(tǒng)、體感模擬系統(tǒng)能夠向駕駛員提供接近真實(shí)的運(yùn)動(dòng)體感和視覺(jué)、聲覺(jué)、觸覺(jué)反饋。本文針對(duì)這一關(guān)鍵問(wèn)題,從系統(tǒng)層面進(jìn)行考慮,引入成熟的車輛動(dòng)力學(xué)模擬軟件、最新的虛擬現(xiàn)實(shí)顯示技術(shù),進(jìn)行了六自由度駕駛模擬仿真系統(tǒng)的設(shè)計(jì),主要完成了以下工作:(1)廣泛參考國(guó)內(nèi)外的駕駛模擬仿真平臺(tái),結(jié)合目前已具有的試驗(yàn)條件,確定了系統(tǒng)方案和性能要求。分析了其中的關(guān)鍵技術(shù),確定了技術(shù)方案,并進(jìn)行了詳細(xì)的說(shuō)明。(2)基于應(yīng)用廣泛的虛擬現(xiàn)實(shí)引擎和三維建模軟件構(gòu)建了駕駛模擬環(huán)境,并通過(guò)虛擬顯示頭盔進(jìn)行顯示,實(shí)現(xiàn)向駕駛員進(jìn)行駕駛環(huán)境的視覺(jué)模擬。制作了較高精度的場(chǎng)景模型,制作了音效,并編制了腳本對(duì)場(chǎng)景中的物理模型進(jìn)行驅(qū)動(dòng),使其符合物理生活規(guī)律,獲得了逼真的場(chǎng)景效果。(3)基于NI PXI實(shí)時(shí)系統(tǒng)及車輛動(dòng)力學(xué)軟件CarSim構(gòu)建了駕駛模擬仿真系統(tǒng)的車輛動(dòng)力學(xué)模型實(shí)時(shí)解算系統(tǒng),利用羅技G27實(shí)現(xiàn)了駕駛員操作數(shù)據(jù)的采集。由于NI實(shí)時(shí)系統(tǒng)的優(yōu)勢(shì),可以保證仿真過(guò)程的實(shí)時(shí)和準(zhǔn)確。(4)調(diào)研國(guó)內(nèi)外駕駛模擬器的六自由度運(yùn)動(dòng)平臺(tái)空間參數(shù)并考慮實(shí)驗(yàn)室現(xiàn)有條件設(shè)計(jì)了平臺(tái)運(yùn)動(dòng)空間參數(shù)。通過(guò)建立平臺(tái)結(jié)構(gòu)參數(shù)與空間性能參數(shù)之間的數(shù)學(xué)關(guān)系,分析得到了一些可以幫助進(jìn)行平臺(tái)結(jié)構(gòu)參數(shù)設(shè)計(jì)的規(guī)則。然后利用三維建模軟件CATIA進(jìn)行了參數(shù)化建模、仿真、干涉校驗(yàn)。確定了最終的平臺(tái)設(shè)計(jì)方案,最后利用ADAMS和MATLAB進(jìn)行了聯(lián)合仿真,測(cè)試了不同工況下的平臺(tái)受力及運(yùn)動(dòng)情況。(5)分析了駕駛模擬系統(tǒng)中數(shù)據(jù)通信需求,并選取了數(shù)據(jù)通信實(shí)現(xiàn)方法,編程實(shí)現(xiàn)并進(jìn)行了相應(yīng)的測(cè)試。結(jié)果證明,所設(shè)計(jì)的數(shù)據(jù)通信程序能夠滿足需求。通過(guò)以上的研究工作,基本實(shí)現(xiàn)了駕駛模擬仿真系統(tǒng)設(shè)計(jì)中的重要模塊。車輛動(dòng)力學(xué)模型解算系統(tǒng)能夠?qū)崟r(shí)而準(zhǔn)確的解算駕駛員的輸入。視景系統(tǒng)能夠提供較為逼真的沉浸效果。運(yùn)動(dòng)平臺(tái)控制效果良好。
[Abstract]:Automobile is a complex system of man-machine coordinated control. In order to control and simulate the vehicle, the human factors must be taken into consideration, and the influence of the real road must be considered. Therefore, it is very necessary to simulate the car system by combining the three people with the car road. In order to simulate the human vehicle road level, we must rely on a more comprehensive simulation system. The traditional HIL simulation architecture is not enough to perform the simulation task. This paper introduces human factors and carries out H2IL simulation, and driving simulation system is a form of vehicle simulation based on H2IL. Vehicle driving simulation system is an important tool and means for automobile engineering research, and its most important performance index is immersion. In order to achieve good immersion effect for drivers, it is required that the vehicle dynamics model of driving simulator is accurate enough, and the solution result is close to the real physical world. Its display system, acoustic simulation system and somatosensory simulation system can provide drivers with real motion sense, visual, sound and tactile feedback. Aiming at the key problem, consider from the system level, the introduction of vehicle dynamics simulation software, the mature virtual reality display of the latest technology, the design of the six degree of freedom driving simulation system, mainly completed the following work: (1) extensive reference to domestic and foreign driving simulation platform, combined with the current experimental conditions has, determine the requirements of the system scheme and performance. The key technology is analyzed, the technical scheme is determined, and the detailed description is carried out. (2) based on the widely used virtual reality engine and 3D modeling software, the driving simulation environment is constructed, and the visual display of the driving environment is realized through virtual display helmet. The high accuracy scene model is made, and the sound effect is produced, and the script is compiled to drive the physical model in the scene, making it conform to the law of physical life, and get the realistic scene effect. (3) based on NI PXI real-time system and vehicle dynamics software CarSim, a real-time simulation system of vehicle dynamics model for driving simulation system is built. The driver data collection is realized by Logitech G27. Because of the advantages of NI real-time system, the real-time and accurate simulation process can be ensured. (4) to investigate the spatial parameters of the six degree of freedom motion platform of the driving simulator at home and abroad and to design the space parameters of the platform by considering the existing conditions of the laboratory. By establishing the mathematical relationship between the platform structure parameters and the spatial performance parameters, some rules which can help the design of the platform structure parameters are obtained. Then the parameterized modeling, simulation and interference check are carried out by using the 3D modeling software CATIA. Finally, the final design of the platform is determined. At last, the joint simulation is carried out with ADAMS and MATLAB to test the force and movement of the platform under different working conditions. (5) the data communication needs in the driving simulation system are analyzed, and the data communication implementation method is selected, and the corresponding test is implemented by programming. The results show that the designed data communication program can meet the requirements. Through the above research work, the important modules in the design of driving simulation system are basically realized. The vehicle dynamic model solution system can calculate the driver's input in real time and accurately. The visual system can provide more realistic immersion. The control effect of the motion platform is good.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U467.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 晁智強(qiáng);郭小牛;劉相波;韓壽松;李華瑩;;六自由度運(yùn)動(dòng)平臺(tái)位置反解的建模與仿真研究[J];流體傳動(dòng)與控制;2010年06期
2 楊永立;;六自由度運(yùn)動(dòng)平臺(tái)的仿真研究[J];工程機(jī)械文摘;2009年01期
3 宗長(zhǎng)富;麥莉;王德平;李雅娟;;基于駕駛模擬器的駕駛員所偏好的轉(zhuǎn)向盤(pán)力矩特性研究[J];中國(guó)機(jī)械工程;2007年08期
4 陳聰;陳樂(lè)生;;基于ADAMS的六自由度運(yùn)動(dòng)平臺(tái)運(yùn)動(dòng)學(xué)分析[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期
5 黃其濤;韓俊偉;何景峰;;六自由度并聯(lián)運(yùn)動(dòng)平臺(tái)動(dòng)力學(xué)建模及分析[J];機(jī)械科學(xué)與技術(shù);2006年04期
6 劉榮,王宣銀;并聯(lián)六自由度平臺(tái)的運(yùn)動(dòng)仿真及其可視化設(shè)計(jì)研究[J];液壓與氣動(dòng);2005年01期
7 朱龍彪,龔建偉,徐海黎,莊健;并聯(lián)六自由度機(jī)器人智能控制算法的研究[J];機(jī)械設(shè)計(jì)與制造;2004年05期
8 魏明,曹正清,龔家偉,楊方廷;駕駛訓(xùn)練模擬器的設(shè)計(jì)與開(kāi)發(fā)[J];計(jì)算機(jī)仿真;2004年03期
9 郭孔輝,丁海濤,宗長(zhǎng)富,陳明嵐;人—車閉環(huán)操縱性評(píng)價(jià)與優(yōu)化的研究進(jìn)展[J];機(jī)械工程學(xué)報(bào);2003年10期
10 張尚盈,趙慧,韓俊偉;六自由度運(yùn)動(dòng)平臺(tái)實(shí)時(shí)控制的正/反解算法[J];機(jī)床與液壓;2003年03期
相關(guān)博士學(xué)位論文 前1條
1 羅竹輝;車輛模擬器運(yùn)動(dòng)模擬技術(shù)研究[D];浙江大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 張玉潔;基于CarSim的電動(dòng)助力轉(zhuǎn)向系統(tǒng)仿真與硬件在環(huán)驗(yàn)證[D];合肥工業(yè)大學(xué);2015年
2 程海濤;基于虛擬現(xiàn)實(shí)的直升機(jī)駕駛模擬器開(kāi)發(fā)[D];吉林大學(xué);2014年
3 王磊;基于汽車動(dòng)力學(xué)的虛擬駕駛模擬仿真[D];重慶大學(xué);2014年
4 董超;基于CompactRIO的純電動(dòng)汽車硬件在環(huán)系統(tǒng)開(kāi)發(fā)[D];吉林大學(xué);2014年
5 黃曉敏;基于Matlab的六自由度平臺(tái)研究[D];華南理工大學(xué);2013年
6 曲展龍;六自由度并聯(lián)機(jī)構(gòu)的仿真與結(jié)構(gòu)優(yōu)化[D];哈爾濱工業(yè)大學(xué);2013年
7 王帆;基于六自由度平臺(tái)的轉(zhuǎn)向架運(yùn)動(dòng)姿態(tài)建模與演算[D];吉林大學(xué);2013年
8 詹志群;面向駕駛?cè)肆τX(jué)模擬的多自由度運(yùn)動(dòng)平臺(tái)控制算法研究[D];武漢理工大學(xué);2012年
9 陳俊;車輛駕駛模擬器視景仿真技術(shù)研究[D];浙江大學(xué);2012年
10 肖華;六自由度Stewart并聯(lián)機(jī)構(gòu)結(jié)構(gòu)的優(yōu)化設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2011年
,本文編號(hào):1342010
本文鏈接:http://sikaile.net/kejilunwen/qiche/1342010.html