輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車耦合動(dòng)力學(xué)特性研究
本文關(guān)鍵詞:輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車耦合動(dòng)力學(xué)特性研究 出處:《山東理工大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 輪轂電機(jī) 電動(dòng)汽車 耦合動(dòng)力學(xué) 分層協(xié)調(diào)控制 集成優(yōu)化
【摘要】:迫于能源緊缺與環(huán)境污染的雙重壓力,高效、節(jié)能、環(huán)保的電動(dòng)汽車成為全球汽車行業(yè)研究的熱點(diǎn)。近年來(lái),基于輪轂電機(jī)獨(dú)立驅(qū)動(dòng)的電動(dòng)汽車具有廣闊的研究前景。輪轂電機(jī)驅(qū)動(dòng)車輛具有獨(dú)特的結(jié)構(gòu)和布置方式,取消了傳統(tǒng)的機(jī)械傳動(dòng)部件,使傳動(dòng)系統(tǒng)簡(jiǎn)化,整車整備質(zhì)量降低,傳動(dòng)效率提高,有效利用空間增大,提高了車輛的通過(guò)性能。輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車全新的電動(dòng)汽車結(jié)構(gòu)形式,已成為未來(lái)電動(dòng)汽車領(lǐng)域發(fā)展的一個(gè)新趨勢(shì)。但是,由于輪轂電機(jī)的引入,使得輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車的非簧載質(zhì)量顯著增加,嚴(yán)重影響了車輛的動(dòng)力學(xué)特性;同時(shí)輪轂電機(jī)受不平路面激勵(lì)振動(dòng)進(jìn)一步惡化,造成電機(jī)定轉(zhuǎn)子位移量不斷變化,給車輛的動(dòng)力學(xué)特性帶來(lái)不利的影響。因此,系統(tǒng)的研究輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車的耦合動(dòng)力學(xué)特性具有十分重要的意義。在總結(jié)了國(guó)內(nèi)外相關(guān)研究成果的基礎(chǔ)上,以兩后輪輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車為研究對(duì)象,建立了整車非線性耦合動(dòng)力學(xué)模型,分析了路面及電磁力雙重激勵(lì)下輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車的耦合動(dòng)力學(xué)性能,研究了主動(dòng)前輪轉(zhuǎn)向控制、直接橫擺力矩控制和主動(dòng)懸架控制集成的分層式協(xié)調(diào)控制,并對(duì)汽車系統(tǒng)結(jié)構(gòu)和控制器參數(shù)進(jìn)行了集成優(yōu)化設(shè)計(jì)。論文主要研究?jī)?nèi)容如下:(1)輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車耦合動(dòng)力學(xué)模型的建立及驗(yàn)證:考慮車輛縱向、橫向和垂向動(dòng)力學(xué)之間的主要耦合關(guān)系,建立了相對(duì)比較完備的輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車16自由度非線性耦合動(dòng)力學(xué)模型。在車輛建模過(guò)程中,根據(jù)前后軸距的滯后及左右車輪的相關(guān)程度,建立了路面不平度時(shí)域模型。應(yīng)用Matlab/Simulink軟件建立了整車耦合動(dòng)力學(xué)仿真模型,并基于多體動(dòng)力學(xué)軟件Adams/Car對(duì)模型的正確性進(jìn)行了驗(yàn)證,為后續(xù)車輛動(dòng)力學(xué)性能的仿真分析及系統(tǒng)控制的研究奠定了基礎(chǔ)。(2)路面及電磁力復(fù)合激勵(lì)下車輛的耦合動(dòng)力學(xué)特性研究:基于永磁同步電機(jī)本體結(jié)構(gòu),建立了路面激勵(lì)引起的輪轂電機(jī)均勻/不均勻氣隙長(zhǎng)度模型,應(yīng)用麥克斯韋應(yīng)力張量法推導(dǎo)出了輪轂電機(jī)電磁力的解析表達(dá)式,并對(duì)路面不平度及電磁力復(fù)合激勵(lì)下輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車的耦合動(dòng)力學(xué)特性進(jìn)行仿真分析。(3)車輛耦合動(dòng)力學(xué)系統(tǒng)的分層式協(xié)調(diào)控制研究:為了消除車輛各子系統(tǒng)間的耦合作用對(duì)整車控制性能的影響,本文針對(duì)汽車轉(zhuǎn)向、制動(dòng)和懸架集成系統(tǒng),分別設(shè)計(jì)了主動(dòng)前輪轉(zhuǎn)向、直接橫擺力矩、主動(dòng)懸架的各子系統(tǒng)控制器及其協(xié)調(diào)控制器,制定了汽車各子系統(tǒng)具體的協(xié)調(diào)控制策略和控制功能權(quán)重的分配。通過(guò)與分散控制系統(tǒng)進(jìn)行仿真對(duì)比,驗(yàn)證了汽車耦合動(dòng)力學(xué)系統(tǒng)分層式協(xié)調(diào)控制效果的有效性,為后續(xù)汽車多個(gè)子系統(tǒng)集成的分層式協(xié)調(diào)控制提供了一個(gè)新的思路。(4)車輛耦合動(dòng)力學(xué)系統(tǒng)結(jié)構(gòu)與控制器參數(shù)的集成優(yōu)化:在分析各系統(tǒng)參數(shù)對(duì)動(dòng)力學(xué)評(píng)價(jià)指標(biāo)影響的基礎(chǔ)上,采用擾動(dòng)法分析了車輛動(dòng)力學(xué)性能指標(biāo)對(duì)懸架剛度和阻尼、車身與電機(jī)質(zhì)量比、定轉(zhuǎn)子質(zhì)量比及軸承與輪胎剛度比的靈敏度。在對(duì)輪轂電機(jī)驅(qū)動(dòng)系統(tǒng)參數(shù)靈敏度分析的基礎(chǔ)上,選擇靈敏度較大的系統(tǒng)結(jié)構(gòu)參數(shù)作為優(yōu)化變量。針對(duì)車輛耦合動(dòng)力學(xué)系統(tǒng)全局性能的最優(yōu)的問(wèn)題,采用了基于粒子群算法的系統(tǒng)機(jī)械結(jié)構(gòu)與協(xié)調(diào)控制器參數(shù)的集成優(yōu)化設(shè)計(jì),并與協(xié)調(diào)控制和結(jié)構(gòu)優(yōu)化對(duì)比仿真分析,結(jié)果表明:系統(tǒng)結(jié)構(gòu)與協(xié)調(diào)控制器參數(shù)的集成優(yōu)化進(jìn)一步提高了汽車的行駛安全性、平順性和操縱穩(wěn)定性等整車性能。研究結(jié)果對(duì)車輛耦合動(dòng)力學(xué)系統(tǒng)整體最優(yōu)性能的實(shí)現(xiàn)提供了一定的參考意義。
[Abstract]:Owing to the double pressure of energy shortage and environmental pollution, the electric vehicle with high efficiency, energy saving and environmental protection has become a hot spot in the global automotive industry. In recent years, the electric vehicle based on the independent drive of hub motor has a wide research prospect. With the structure and layout of the unique wheel motor driven vehicle, canceled the traditional mechanical transmission parts, the transmission system is simplified, crub quality is reduced and the transmission efficiency, the effective use of space increases, improves vehicle performance by. The wheel motor drive electric vehicle's new electric vehicle structure form has become a new trend in the field of electric vehicle development in the future. However, due to the introduction of motor wheel, the wheel motor drive electric vehicle unsprung mass increased significantly, serious impact on the dynamic characteristics of the vehicle; and wheel motor under road excitation vibration caused by the further deterioration of motor stator and rotor displacement changing, adversely affect the dynamic characteristics of the vehicle. Therefore, it is of great significance to study the coupling dynamic characteristics of the wheel motor driven by the hub motor. On the basis of the relevant research results at home and abroad, with two rear wheel motor drive electric vehicle as the research object, established the vehicle nonlinear coupling dynamics model, analyzes the coupling dynamics of road wheel motor and electromagnetic force excitation dual drive electric vehicle, on the active front steering control, direct yaw moment control active suspension control and hierarchical control coordination and integration, on the vehicle system structure and controller parameters of the integrated optimization design. The main contents of this thesis are as follows: (1) establishment and verification of wheel motor drive coupling dynamics model of electric vehicles: considering the vehicle longitudinal, transverse and vertical relationship to the main coupling dynamics between, established a relatively complete wheel motor drive 16 degrees of freedom nonlinear coupling dynamics model of electric vehicle. In the process of vehicle modeling, the time domain model of road roughness is established according to the lag of the front and back wheelbase and the relative degree of the left and right wheels. The vehicle coupling dynamics simulation model is established by Matlab/Simulink software, and the correctness of the model is verified based on multi-body dynamics software Adams/Car, which lays the foundation for subsequent vehicle dynamic performance simulation analysis and system control research. (2) study on coupling dynamics of vehicle pavement under electromagnetic force and composite excitation: permanent magnet synchronous motor based on the body structure, a wheel motor vibration caused by road uniform / non-uniform air gap length model, analytical expressions of stress tensor method to derive the electromagnetic force of wheel motor application Maxwell, simulation analysis of coupling dynamics and the road roughness in wheel motor and electromagnetic force compound excitation drive electric vehicle. (3) study of hierarchical dynamics of vehicle coupled system coordinated control: in order to eliminate the vehicle subsystems coupling effects on the control performance of the vehicle, the vehicle steering, braking and suspension integrated system, each subsystem controllers were designed active front wheel steering and direct yaw moment and active suspension and coordinated controller and developed a distribution coordination control strategy and control function of the weights of the specific sub system of automobile. By comparing the simulation results with the distributed control system, the effectiveness of the hierarchical coordinated control of the vehicle coupling dynamics system is verified, which provides a new idea for the hierarchical coordinated control of multiple subsystems of subsequent vehicle. (4) the integration and optimization of vehicle dynamic system coupling structure and controller parameters: Based on the analysis of the system of evaluation parameters influence on kinetics, the perturbation method of vehicle dynamics performance index of the sensitivity of suspension stiffness and damping, the body and the quality of motor stator and rotor bearing ratio, mass ratio and stiffness ratio of tire. On the basis of the analysis of the parameter sensitivity of the wheel motor drive system, the system structure parameters with high sensitivity are chosen as the optimization variables. For the optimal vehicle coupling dynamics system global performance problems, using particle swarm optimization system of mechanical structure and coordination controller parameter optimization design based on integrated, and results show that the coordinated control and simulation and optimization analysis, integrated coordination and optimization of system structure and parameters of the controller to further improve the driving safety and ride comfort of vehicle and the handling stability of the vehicle performance. The results of the study provide a certain reference for the realization of the overall optimal performance of the vehicle coupling dynamic system.
【學(xué)位授予單位】:山東理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U469.72
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬貴龍;輪轂電機(jī)使用中應(yīng)注意的若干問(wèn)題[J];中國(guó)自行車;2002年06期
2 辜承林;;輪轂電機(jī)發(fā)展思考[J];電機(jī)技術(shù);2006年03期
3 褚文強(qiáng);辜承林;;電動(dòng)車用輪轂電機(jī)研究現(xiàn)狀與發(fā)展趨勢(shì)[J];電機(jī)與控制應(yīng)用;2007年04期
4 尹亮;廖達(dá)平;許永亮;代明兵;彭來(lái);;電動(dòng)代步車用輪轂電機(jī)的優(yōu)化設(shè)計(jì)[J];機(jī)械管理開(kāi)發(fā);2010年05期
5 舒紅宇;彭來(lái);謝鑫;尹亮;;基于遺傳算法的電動(dòng)代步車用輪轂電機(jī)優(yōu)化設(shè)計(jì)[J];云南大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年02期
6 韋萍;;輪轂電機(jī)技術(shù)在新能源汽車上的應(yīng)用分析[J];汽車零部件;2012年06期
7 向奎;盧剛;李聲晉;周勇;賈亮;;四輪轂電機(jī)代步車控制系統(tǒng)設(shè)計(jì)[J];微特電機(jī);2013年06期
8 車堅(jiān)志;張君;胡波;王利濤;張飛;;重載輪式車輛輪轂電機(jī)系統(tǒng)方案設(shè)計(jì)與控制研究[J];車輛與動(dòng)力技術(shù);2013年02期
9 葛英輝,嚴(yán)迪群,倪光正;新的電動(dòng)車用兩相永磁無(wú)刷輪轂電動(dòng)機(jī)的研究[J];中小型電機(jī);2004年05期
10 ;讀者E-mail[J];汽車與配件;2004年08期
相關(guān)會(huì)議論文 前5條
1 劉宏;高偉新;;永磁輪轂電機(jī)磁系統(tǒng)的研究現(xiàn)狀[A];創(chuàng)新驅(qū)動(dòng),加快戰(zhàn)略性新興產(chǎn)業(yè)發(fā)展——吉林省第七屆科學(xué)技術(shù)學(xué)術(shù)年會(huì)論文集(上)[C];2012年
2 陳慧;卓桂榮;艾婷婷;;輪轂電機(jī)驅(qū)動(dòng)電動(dòng)車的測(cè)試環(huán)境開(kāi)發(fā)研究[A];科技、工程與經(jīng)濟(jì)社會(huì)協(xié)調(diào)發(fā)展——中國(guó)科協(xié)第五屆青年學(xué)術(shù)年會(huì)論文集[C];2004年
3 張澤宇;丁惜瀛;王晶晶;劉德陽(yáng);;輪轂電機(jī)電動(dòng)汽車動(dòng)力學(xué)特性研究[A];第九屆沈陽(yáng)科學(xué)學(xué)術(shù)年會(huì)論文集(信息科學(xué)與工程技術(shù)分冊(cè))[C];2012年
4 王貴明;王金懿;;兼有電動(dòng)、發(fā)電回饋和電磁制動(dòng)多功能的電動(dòng)汽車輪轂電機(jī)[A];第十五屆中國(guó)小電機(jī)技術(shù)研討會(huì)論文摘要集[C];2010年
5 王貴明;王金懿;;具有啟動(dòng)繞組的單相開(kāi)關(guān)磁阻式多功能輪轂電機(jī)[A];第十五屆中國(guó)小電機(jī)技術(shù)研討會(huì)論文摘要集[C];2010年
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)記者 馬靜t,
本文編號(hào):1339088
本文鏈接:http://sikaile.net/kejilunwen/qiche/1339088.html