基于SWAT模型的區(qū)域農(nóng)業(yè)干旱模擬研究
[Abstract]:Against the background of increasing global warming and frequent extreme drought events, drought has attracted more and more attention from hydrologists, meteorologists and agricultural scientists. The Jaru River Basin is located in the central and eastern part of Henan Province. It is one of the grain and cotton production bases in Henan Province and is also a severe and moderate drought-prone area. Drought disaster has become one of the main threats to local food security. Based on the analysis of the agricultural conditions and the causes of agricultural drought, the relative humidity of soil is selected as the evaluation index of agricultural drought in this paper, which is based on the study area of the Jialu River control basin, a tributary of the Huaihe River. The temporal and spatial evolution characteristics and periodic evolution of agricultural drought in the Jaru River Basin from 1992 to 2008 were evaluated. At the same time, based on DEM data, land use data, soil type data and hydrometeorological data, a SWAT model was constructed to simulate the agricultural drought process in the Jaru River Basin from 2009 to 2014. By comparing the results of agricultural drought simulation with historical drought events, the simulation effect of SWAT model on agricultural drought in the Jaru River Basin was verified. The main research results are as follows: (1) the frequency of agricultural drought in the Jaru River basin is high, the seasonal characteristics are obvious, the frequency of spring drought and summer drought is high, and autumn drought is one of the main drought types. The frequency of occurrence of drought is lower than that of spring drought and summer drought. There was a significant correlation between precipitation and soil relative humidity in 10-20cm soil layer at the confidence level of 0. 05. The soil relative humidity could not only reflect the effect of precipitation on the formation of drought, but also show the drought situation of crops intuitively. (2) the interannual variation of soil relative humidity in early spring, late spring, early spring and early summer and autumn showed a regular cycle of about 9 years. The period signal of the middle and upper reaches of the river basin is stable, the scale of periodic variation is various, and the scale of downstream cycle variation is single. The frequency of early spring drought and early spring drought in late spring and early summer is higher than that in late spring and autumn. The frequency of drought in upper and lower spring is higher than that in early spring. The frequency of early spring drought in middle reaches is higher than that in lower reaches. The drought in upper and upper reaches is more serious than that in lower reaches. In 1992, 1995 and 2000, a long duration of drought occurred in the upper and middle reaches of the basin, with severe drought in spring and summer and drought in the middle reaches into autumn. (3) the frequency of drought in the upper reaches of the Jaru River Basin was the highest in late spring and early summer, followed by the first spring drought. The frequency of autumn drought is lower than that of early spring drought, and the frequency of summer drought is the lowest. In the middle reaches, the frequency of early spring drought is the highest, followed by late spring and early summer drought, the frequency of drought occurrence is lower than that of late spring and early summer, and the frequency of autumn drought is the lowest. The frequency of drought in the lower reaches is the highest in late spring and early summer, followed by the first spring drought, and the frequency of drought in autumn is the same as that in autumn. (4) Regional agricultural drought simulation based on SWAT model has a good effect on simulating agricultural drought events in 2009-2014, and the results of agricultural drought assessment are basically consistent with historical agricultural drought events. At the same time, the spatial distribution of soil relative humidity in typical representative years is basically consistent with the measured soil relative humidity, which can reflect the spatial distribution characteristics of agricultural drought more carefully, and can be further applied to the prediction of agricultural drought in the study area.
【學(xué)位授予單位】:華北水利水電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S423
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫曉東;劉桂香;包玉海;路艷峰;;基于降水距平百分率的蘇尼特草原干旱特征分析[J];內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年02期
2 馬天海;徐靜;單楠;阮曉紅;;賈魯河流域旱作農(nóng)業(yè)區(qū)非點(diǎn)源氮污染負(fù)荷分布規(guī)律及其影響因素研究[J];南京大學(xué)學(xué)報(bào)(自然科學(xué));2016年01期
3 黃友昕;劉修國(guó);沈永林;劉詩(shī)詩(shī);孫飛;;農(nóng)業(yè)干旱遙感監(jiān)測(cè)指標(biāo)及其適應(yīng)性評(píng)價(jià)方法研究進(jìn)展[J];農(nóng)業(yè)工程學(xué)報(bào);2015年16期
4 王富強(qiáng);王雷;陳希;;鄭州市土壤相對(duì)濕度變化特征及影響因素分析[J];節(jié)水灌溉;2015年02期
5 姜曉峰;王立;馬放;李海強(qiáng);張淑娟;梁雄偉;;SWAT模型土壤數(shù)據(jù)庫(kù)的本土化構(gòu)建方法研究[J];中國(guó)給水排水;2014年11期
6 李燕;梁忠民;趙衛(wèi)民;劉曉偉;劉和昌;;基于SWAT模型的農(nóng)業(yè)干旱評(píng)價(jià)方法與應(yīng)用[J];南水北調(diào)與水利科技;2014年01期
7 焦其順;朱忠禮;劉紹民;晉銳;杜帆;;宇宙射線快中子法在農(nóng)田土壤水分測(cè)量中的研究與應(yīng)用[J];地球科學(xué)進(jìn)展;2013年10期
8 邱新強(qiáng);高陽(yáng);黃玲;李新強(qiáng);孫景生;段愛(ài)旺;;冬小麥根系形態(tài)性狀及分布[J];中國(guó)農(nóng)業(yè)科學(xué);2013年11期
9 韓宇平;張功瑾;王富強(qiáng);;農(nóng)業(yè)干旱監(jiān)測(cè)指標(biāo)研究進(jìn)展[J];華北水利水電學(xué)院學(xué)報(bào);2013年01期
10 趙麗;馮寶平;張書(shū)花;;國(guó)內(nèi)外干旱及干旱指標(biāo)研究進(jìn)展[J];江蘇農(nóng)業(yè)科學(xué);2012年08期
相關(guān)博士學(xué)位論文 前6條
1 許凱;我國(guó)干旱變化規(guī)律及典型引黃灌區(qū)干旱預(yù)報(bào)方法研究[D];清華大學(xué);2015年
2 張志宇;土壤墑情預(yù)報(bào)與作物灌溉制度多目標(biāo)優(yōu)化[D];河北農(nóng)業(yè)大學(xué);2014年
3 史曉亮;基于SWAT模型的灤河流域分布式水文模擬與干旱評(píng)價(jià)方法研究[D];中國(guó)科學(xué)院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所);2013年
4 翁白莎;流域廣義干旱風(fēng)險(xiǎn)評(píng)價(jià)與風(fēng)險(xiǎn)應(yīng)對(duì)研究[D];天津大學(xué);2012年
5 雷麗萍;水安全視角下水體干預(yù)行為評(píng)估研究[D];華中科技大學(xué);2012年
6 許繼軍;分布式水文模型在長(zhǎng)江流域的應(yīng)用研究[D];清華大學(xué);2007年
相關(guān)碩士學(xué)位論文 前8條
1 馮珍珍;SWAT模型在達(dá)溪河流域的應(yīng)用研究[D];西北農(nóng)林科技大學(xué);2015年
2 曾波;湖南省農(nóng)業(yè)干旱空間分布研究[D];中南林業(yè)科技大學(xué);2014年
3 王藝璇;基于SWAT模型的不同類型干旱指標(biāo)關(guān)系分析及預(yù)測(cè)[D];鄭州大學(xué);2014年
4 孔凱;農(nóng)業(yè)干旱災(zāi)害風(fēng)險(xiǎn)管理研究[D];山東農(nóng)業(yè)大學(xué);2012年
5 齊文增;超高產(chǎn)夏玉米根系的生理特性及形態(tài)特征[D];山東農(nóng)業(yè)大學(xué);2012年
6 張?zhí)m霞;基于關(guān)鍵水循環(huán)要素的海河流域干旱演變研究[D];遼寧師范大學(xué);2012年
7 張光軍;鄂北地區(qū)農(nóng)業(yè)旱災(zāi)的成因與對(duì)策研究[D];華中師范大學(xué);2008年
8 王石;連續(xù)干旱下作物閾值反應(yīng)與紅壤干旱程度表達(dá)[D];華中農(nóng)業(yè)大學(xué);2006年
,本文編號(hào):2354836
本文鏈接:http://sikaile.net/kejilunwen/nykj/2354836.html