縣域尺度上基于GF-1PMS影像的冬小麥種植面積遙感監(jiān)測
[Abstract]:In order to explore the feasibility and accuracy of remote sensing monitoring of winter wheat based on PMS images of Gao Fen 1 satellite (GF-1) at county scale, six scenes of GF-1 PMS images were selected from Huxian County, Henan Province, in the first ten days of February, 2015, in order to investigate the feasibility and accuracy of remote sensing monitoring of winter wheat. After pre-processing such as radiometric calibration, FLAASH atmospheric correction, NNDiffuse fusion, geometric correction, map projection conversion and so on, a new classification model of winter wheat decision tree was constructed on the basis of field survey and sample analysis. In the first layer of the model, the pixel of NDVI0.311 is winter wheat, and the coarse classification result of winter wheat is obtained. In order to further improve the classification accuracy of winter wheat, the classification schemes are as follows: the first band surface reflectivity 0.146, the second band surface reflectivity 0.148, the third band surface reflectivity 0.135, the third band 0.135, the second band 0.148, the third band 0.135. Winter wheat is the pixel of surface reflectance 0.250 in band 4. The classification results are processed by morphological filtering to eliminate or reduce the isolated pixels in the classification results. Based on the decision tree classification model and the IsoData unsupervised classification model with ENVI software, the accuracy of GF-1PMS image and Landsat-8OLI image in winter wheat area extraction were compared and analyzed. The results showed that based on the newly constructed decision tree classification model, the planting area of winter wheat was 115,715.81hm2in 2015, and the overall accuracy of confusion matrix test was 99.62kappa coefficient 0.99. The overall accuracy of PMS image extraction of winter wheat confusion matrix is 9% higher than that of OLI image. It is feasible to extract the planting area of winter wheat before harvest on the county scale based on monochronous GF-1PMS image, and the precision of extraction is high.
【作者單位】: 中國科學院遙感與數(shù)字地球研究所遙感科學國家重點實驗室;中國科學院大學環(huán)境與資源學院;河南大學環(huán)境與規(guī)劃學院;
【基金】:國家自然科學基金項目(41301390,4137138) 國家“973”計劃項目(2013CB733405) 國家“863”計劃項目(2014AA06A511) 云南省科技計劃(2010AD004) 高分辨率國家重大專項(20-Y30B17-9001-14/16)
【分類號】:S127;S512.11
【相似文獻】
相關期刊論文 前10條
1 譚建光;張錦水;高晨雪;鮑宇陽;;基于結構規(guī)模的冬小麥種植面積遙感抽樣估算[J];農(nóng)業(yè)工程學報;2012年23期
2 李寄;黃進良;許文波;;湖北省冬小麥種植面積遙感估算方法研究[J];世界科技研究與發(fā)展;2008年05期
3 武永利;王云峰;張建新;欒青;;應用線性混合模型遙感監(jiān)測冬小麥種植面積[J];農(nóng)業(yè)工程學報;2009年02期
4 張建國;李憲文;吳延磊;;面向對象的冬小麥種植面積遙感估算研究[J];農(nóng)業(yè)工程學報;2008年05期
5 張喜旺;秦耀辰;秦奮;;綜合季相節(jié)律和特征光譜的冬小麥種植面積遙感估算[J];農(nóng)業(yè)工程學報;2013年08期
6 趙蓮;張錦水;胡潭高;陳聯(lián)裙;李樂;;變端元混合像元分解冬小麥種植面積測量方法[J];國土資源遙感;2011年01期
7 姚渝麗,孫彥君,馬宏濱,王蘊波,歷艷志;吉林省冬小麥種植試驗的農(nóng)業(yè)氣象條件分析[J];吉林農(nóng)業(yè)大學學報;1999年02期
8 郝志新,鄭景云,陶向新;遼寧省冬小麥種植北界研究[J];中國農(nóng)業(yè)氣象;2002年04期
9 黃青;李丹丹;陳仲新;劉佳;王利民;;基于MODIS數(shù)據(jù)的冬小麥種植面積快速提取與長勢監(jiān)測[J];農(nóng)業(yè)機械學報;2012年07期
10 陳健;劉云慧;宇振榮;;基于時序MODIS-EVI數(shù)據(jù)的冬小麥種植信息提取[J];中國農(nóng)學通報;2011年01期
相關會議論文 前3條
1 武永利;王云峰;張建新;欒青;;混合像元分解技術應用于冬小麥種植面積研究[A];中國氣象學會2007年年會氣象綜合探測技術分會場論文集[C];2007年
2 潘耀忠;雷燕飛;孫冠楠;;基于歷史數(shù)據(jù)的冬小麥種植面積測量抽樣方法研究[A];全國農(nóng)業(yè)遙感技術研討會論文集[C];2009年
3 李苓苓;潘耀忠;張錦水;宋國寶;侯東;;SVM與PCVA相結合的冬小麥種植面積測量方法研究[A];全國農(nóng)業(yè)遙感技術研討會論文集[C];2009年
相關碩士學位論文 前2條
1 樊香所;基于風云衛(wèi)星中分辨率數(shù)據(jù)的農(nóng)業(yè)種植區(qū)信息提取方法研究[D];電子科技大學;2015年
2 許亮;基于Landsat8遙感影像的冬小麥種植面積提取方法研究[D];湖北大學;2016年
,本文編號:2352708
本文鏈接:http://sikaile.net/kejilunwen/nykj/2352708.html