武漢設(shè)施菜地土壤磷素變化及其影響因素的研究
本文選題:設(shè)施菜地 + 土壤磷 ; 參考:《武漢理工大學(xué)》2015年碩士論文
【摘要】:設(shè)施蔬菜種植是緩解城鄉(xiāng)居民冬春蔬菜供應(yīng)不足、城郊人多地少等矛盾的重要途徑。設(shè)施菜地受環(huán)境條件和不科學(xué)的管理等因素作用強(qiáng)烈,土壤化學(xué)、生物等過(guò)程往往不同于自然條件下的土壤。本研究以武漢城郊設(shè)施菜地土壤為對(duì)象,采用實(shí)地取樣分析和室內(nèi)模擬實(shí)驗(yàn)相結(jié)合的方法,分析了不同地域、設(shè)施年限、輪作模式等條件下設(shè)施菜地土壤磷素變化及垂直分布規(guī)律,研究了不同環(huán)境條件對(duì)土壤磷素變化的影響,比較了典型環(huán)境條件對(duì)土壤磷素影響的作用大小。取得的主要進(jìn)展有:(1)實(shí)地采樣結(jié)果顯示,武漢城郊土壤磷素水平處于輕度富集狀態(tài),近郊和遠(yuǎn)郊樣區(qū)設(shè)施菜地土壤Olsen-P和MBP平均含量均高于露天菜地土壤,且遠(yuǎn)郊Olsen-P和MBP含量變化差異比近郊的突出;近郊設(shè)施土壤磷素變化隨設(shè)施年限延長(zhǎng)總體上呈增加趨勢(shì),土壤TP從設(shè)施1年的1.92 g/kg增加到設(shè)施20年的2.99 g/kg,Olsen-P含量在三個(gè)采樣時(shí)間均明顯增加,MBP含量有一定程度的增加,土壤Olsen-P和MBP含量的變化趨勢(shì)均以5年設(shè)施年限為轉(zhuǎn)折點(diǎn);“空心菜-大蒜”和“空心菜-芹菜”兩種輪作模式相比,在2011年12月前者的Olsen-P平均含量比后者的要低7.93 mg/kg,而在2012年04月和2012年12月則是前者分別高出后者23.21%和40.62%,MBP的含量變化規(guī)律恰好相反。(2)以Tiessen磷分級(jí)組分來(lái)看,設(shè)施菜地土壤各組分中以無(wú)機(jī)磷為主(占TP的72.94%以上),有機(jī)磷僅占22.65%以下。設(shè)施菜地土壤磷以中等活性磷為主(平均為85.36%),其次為活性磷(平均為9.32%),穩(wěn)定態(tài)磷含量最低(僅占TP的5.32%);而且隨設(shè)施年限延長(zhǎng),中等活性無(wú)機(jī)磷C.HCl-Pi和Residual-P有向有效性較高形態(tài)(主要是NaHCO3-P組分)轉(zhuǎn)化的趨勢(shì)。(3)設(shè)施土壤與露天土壤的TP、Olsen-P和MBP均隨土層加深呈下降趨勢(shì),在0~40cm耕層內(nèi)設(shè)施土壤磷素含量均高于露天菜地,Olsen-P的下遷止于60cm的土層,而MBP含量在40 cm以下基本穩(wěn)定。(4)室內(nèi)模擬試驗(yàn)結(jié)果顯示,土壤MBP隨溫度升高而明顯升高,Olsen-P和CaCl2-P均在10℃條件下最高,溫度條件對(duì)土壤MBP影響最大;無(wú)機(jī)態(tài)NaOH-Pi隨溫度降低而降低,而D.HCl-Pi、C.HCl-Pi和Residual-P卻隨溫度降低而增加。設(shè)施土壤pH 6.89時(shí)其MBP含量最高,而Olsen-P含量卻最低,pH達(dá)到5.30時(shí)Olsen-P含量最高,CaCl2-P則隨pH升高而明顯降低。土壤酸化能使C.HCl-Po向有效性更高的Resin-P及NaHCO3-P組分轉(zhuǎn)化,而土壤pH增加則能促進(jìn)殘留態(tài)磷轉(zhuǎn)為無(wú)機(jī)態(tài)磷。輕度鹽化設(shè)施土壤MBP含量最高,培養(yǎng)25 d后土壤Olsen-P隨鹽化程度加重而增加;設(shè)施土壤鹽化程度加重可提升土壤NaHCO3-Pi和NaOH-Po占全磷的比例,而降低NaHCO3-Po、NaOH-Pi和C.HCl-Po的比例。(5)正交實(shí)驗(yàn)結(jié)果顯示,pH因素對(duì)土壤磷素含量的影響最大,其次是溫度和碳種類(lèi),且均達(dá)顯著性(P0.05),影響程度最小的因素為濕度和磷種類(lèi)水平。磷素的分級(jí)中,pH因素對(duì)無(wú)機(jī)磷組分的影響最大,而對(duì)有機(jī)磷組分的影響最小,溫度對(duì)無(wú)機(jī)磷組分影響僅次于pH因素;碳種類(lèi)和碳種類(lèi)與濕度交互對(duì)有機(jī)磷的影響最大,其次是溫度和磷種類(lèi)因素。
[Abstract]:Vegetable planting is an important way to alleviate the shortage of the urban and rural residents in winter and spring, and the urban suburb people are more and less. It is strongly influenced by environmental conditions and unscientific management. The process of soil chemistry and biology is often different from the soil under natural conditions. This study is based on the soil of vegetable land in the suburb of Wuhan. Using the method of field sampling analysis and indoor simulation experiment, the variation and vertical distribution of soil phosphorus in vegetable soil under the conditions of different regions, facilities and rotation were analyzed. The effects of different environmental conditions on soil phosphorus changes were studied, and the effects of the canonical environment on soil phosphorus were compared. The main progress made were as follows: (1) the results of field sampling showed that the soil phosphorus level in the suburb of Wuhan was slightly enriched, the average content of Olsen-P and MBP in the vegetable soil in the suburb and the outskirts was higher than that in the open vegetable soil, and the variation of Olsen-P and MBP content in the outskirts was more prominent than that in the suburb; the changes of phosphorus in the suburban facilities with the facilities were with the facilities. As a whole, the extension of the years was increasing, and the soil TP increased from 1.92 g/kg in 1 years to 2.99 g/kg in 20 years. The content of Olsen-P was increased in three sampling times, the content of MBP increased to a certain extent. The change trend of soil Olsen-P and MBP content was the turning point of the 5 year facility limit; "cabbage - garlic" and "empty cabbage" The average Olsen-P content of the former was 7.93 mg/kg lower than that of the latter in December 2011, compared with the two rotation models of celery, while in 04 months and December 2012 2012, the former was 23.21% and 40.62% higher respectively, and the change of the content of MBP was the opposite. (2) the inorganic soil components in the facility vegetable soil were found to be inorganic. Phosphorus is the main (more than 72.94% of TP), and organophosphorus is only less than 22.65%. The soil phosphorus in vegetable land is mainly medium active phosphorus (average 85.36%), followed by active phosphorus (average 9.32%), stable phosphorus content is the lowest (only 5.32% of TP), and the medium active inorganic phosphorus C.HCl-Pi and Residual-P have higher direction of availability with the installation years. Mainly the trend of transformation of NaHCO3-P component). (3) the TP, Olsen-P and MBP of both the facilities and the open soil declined with the soil layer deepening, and the phosphorus content in the facility soil in the 0~40cm plough layer was higher than the open vegetable soil, the Olsen-P was moved down to the soil layer of 60cm, and the MBP content was basically stable below 40 cm. (4) indoor simulation test results showed soil The soil MBP increased with temperature, Olsen-P and CaCl2-P were the highest at 10 C, and the effect of temperature on soil MBP was the greatest. Inorganic NaOH-Pi decreased with the decrease of temperature, while D.HCl-Pi, C.HCl-Pi and Residual-P increased with the decrease of temperature. The MBP content was the highest when the facility soil pH was 6.89, but the Olsen-P content was the lowest and pH reached 5.30. The content of Olsen-P was the highest and CaCl2-P decreased with the increase of pH. Soil acidification could convert C.HCl-Po to the higher Resin-P and NaHCO3-P components, while the increase of soil pH could promote the conversion of residual phosphorus to inorganic phosphorus. The soil MBP content was highest in the mild salinization facility, and the soil Olsen-P increased with the degree of salinity after 25 D; Increasing soil salinity could increase the proportion of soil NaHCO3-Pi and NaOH-Po to total phosphorus, while reducing the proportion of NaHCO3-Po, NaOH-Pi and C.HCl-Po. (5) the orthogonal experiment showed that the influence of pH factors on soil phosphorus content was the most, followed by temperature and carbon species, and both were significant (P0.05), and the factors affecting the least degree were humidity and phosphorus species. In class level, pH factors have the greatest influence on the inorganic phosphorus components, while the influence on organophosphorus components is the smallest. The effect of temperature on the inorganic phosphorus components is second only to the pH factor; the influence of carbon species and carbon species and humidity on organophosphorus is the greatest, followed by temperature and phosphorus species.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:S626;S153.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙偉明;王艷艷;馬嘉偉;胡楊勇;童根平;趙科理;葉正錢(qián);;臨安山核桃林地土壤磷素狀況及其淋失風(fēng)險(xiǎn)分析[J];浙江農(nóng)業(yè)學(xué)報(bào);2014年01期
2 張瑞龍;呂家瓏;刁展;;秦嶺北麓兩種土地利用下土壤磷素淋溶風(fēng)險(xiǎn)預(yù)測(cè)[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2014年01期
3 黃敏;余婉霞;李亞兵;周開(kāi)來(lái);尹維文;;武漢城郊設(shè)施菜地土壤pH與可溶性鹽分的變化規(guī)律分析[J];水土保持學(xué)報(bào);2013年06期
4 李春越;王益;Philip Brookes;黨廷輝;王萬(wàn)忠;;pH對(duì)土壤微生物C/P比的影響[J];中國(guó)農(nóng)業(yè)科學(xué);2013年13期
5 Runyu Zhang;Liying Wang;Fengchang Wu;Baoan Song;;Phosphorus speciation in the sediment profile of Lake Erhai, southwestern China: Fractionation and ~(31)P NMR[J];Journal of Environmental Sciences;2013年06期
6 喬潔;任秀艷;;草炭對(duì)設(shè)施土壤有機(jī)碳、氮及土壤微生物生物量的影響[J];西南農(nóng)業(yè)學(xué)報(bào);2012年05期
7 尹巖;梁成華;杜立宇;吳巖;;施用有機(jī)肥對(duì)土壤有機(jī)磷轉(zhuǎn)化的影響研究[J];中國(guó)土壤與肥料;2012年04期
8 張經(jīng)緯;曹文超;嚴(yán)正娟;陳清;李俊良;;種植年限對(duì)設(shè)施菜田土壤剖面磷素累積特征的影響[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2012年05期
9 韓曉日;溫秋香;李娜;楊勁峰;戰(zhàn)秀梅;吳正超;;棕壤有機(jī)無(wú)機(jī)磷分級(jí)方法的比較研究[J];沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào);2011年06期
10 劉偉;武美燕;胡學(xué)玉;艾天成;;設(shè)施栽培地土壤富營(yíng)養(yǎng)化及其潛在的環(huán)境影響[J];環(huán)境科學(xué)與技術(shù);2011年05期
相關(guān)碩士學(xué)位論文 前1條
1 周然;石灰性土壤微生物生物量C/P比的影響因素[D];中國(guó)農(nóng)業(yè)大學(xué);2005年
,本文編號(hào):1995608
本文鏈接:http://sikaile.net/kejilunwen/nykj/1995608.html