凍融循環(huán)作用對黑土無機(jī)磷各形態(tài)含量模擬研究
本文選題:凍融作用 + 無機(jī)磷形態(tài); 參考:《沈陽農(nóng)業(yè)大學(xué)》2016年碩士論文
【摘要】:東北黑土區(qū)平均日、年溫差較大,春季解凍期凍融交替頻繁持續(xù)時(shí)間較長,該時(shí)期凍融作用對土壤磷素轉(zhuǎn)化、遷移和流失有較大影響。磷素是作物生長所需要的重要微量元素,同時(shí)也決定著土壤生產(chǎn)力。無機(jī)磷是土壤磷素主要組成部分,無機(jī)磷各形態(tài)含量是土壤有效磷含量多少的決定性因素。凍融作用是影響無機(jī)磷賦存與轉(zhuǎn)化重要因素之一,對土壤磷素的有效性及其含量有著直接或間接的影響。磷肥施入土壤后發(fā)生了系列的物理化學(xué)過程進(jìn)而影響其對作物的有效性,本試驗(yàn)采用室內(nèi)模擬春季解凍期凍融環(huán)境,以東北黑土為研究對象,研究凍融循環(huán)次數(shù)(FTC)、土壤含水率(W)和土壤有效磷背景值(APb)對鋁磷(A1-P)、鐵磷(Fe-P)、閉蓄態(tài)磷(O-P)和鈣磷(Ca-P)含量的影響,根據(jù)上述研究得出無機(jī)磷形態(tài)在三種因素條件下的變化規(guī)律以及與有效磷Olsen-P的線性關(guān)系,得出作物生長的磷肥需求量及所需的最適土壤含水量,以及土壤磷素狀況以及潛在的環(huán)境風(fēng)險(xiǎn)。取得的主要結(jié)論如下:(1)凍融循環(huán)次數(shù)(FTC)對四種無機(jī)磷形態(tài)的影響凍融循環(huán)過程中,0~5次循環(huán)無機(jī)磷各形態(tài)含量變化較為劇烈,隨著循環(huán)次數(shù)增加,其含量變化逐漸趨于平緩,且相鄰凍融循環(huán)處理之間各形態(tài)大部分都達(dá)到顯著性差異。方差分析得出,凍融循環(huán)次數(shù)對無機(jī)磷各形態(tài)絕對含量增量的影響占主導(dǎo)地位。(2)土壤含水率(W)對四種無機(jī)磷形態(tài)的影響凍融循環(huán)過程中,四種無機(jī)磷形態(tài)含水率為40%、50%和60%時(shí)變化規(guī)律較為相近。含水率為40%時(shí)凍融前后絕對含量差值變化最大,Al-P、 Fe-P和Ca-P分別為6.88 mg·kg-1、8.18 mg·kg-1和7.5 mg·kg-1,含水率為30%時(shí),閉蓄態(tài)磷O-P絕對含量差值變化最大,為36.3 mg·kg-1。方差分析得出,在整個(gè)凍融循環(huán)過程中,含水率除對閉蓄態(tài)磷O-P沒有達(dá)到顯著影響外,對其他三種無機(jī)磷形態(tài)都達(dá)顯著性影響。(3)土壤有效磷背景值(APb)對四種無機(jī)磷形態(tài)的影響凍融循環(huán)過程中,增加有效磷背景值會直接增加四種無機(jī)磷形態(tài)絕對含量,凍融循環(huán)后無機(jī)磷各形態(tài)絕對含量大小為O-PFe-PAl-PCa-P。有效磷背景值在40 mg·kg-1~100 mg·kg-1區(qū)間規(guī)律性明顯,在80 mg·kg-1時(shí)凍融前后含量差值變化最大Al-P、Fe-P、O-P和Ca-P分別為9.37 mg·kg-1、5.44 mg·kg-1、60.77 mg·kg-1和7.44 mg.kg-1。方差分析得出有效磷背景值對無機(jī)磷各形態(tài)絕對含量的影響占主導(dǎo)地位。(4)無機(jī)磷各形態(tài)有效性四種無機(jī)磷形態(tài)的含量與有效磷的含量進(jìn)行相關(guān)分析得出無機(jī)磷各形態(tài)有效性大小為Al-PFe-PCa-PO-P;在相關(guān)分析的基礎(chǔ)上結(jié)合通徑分析得出,Al-P和Fe-P為有效磷源,并且直接影響有效磷含量;閉蓄態(tài)磷O-P和Ca-P通過Al-P間接影響有效磷含量。Olsen-P (Y)與有效磷源Al-P (X1)、Fe-P(X2)得出的線性關(guān)系為:Y= (0.021X2+0.228) X1-(0.028X2-0.149) X2-(0.104X2-3.486X+36.994)。
[Abstract]:In the black soil area of Northeast China, the average daily temperature difference is large, the annual temperature difference is large, and the alternate freezing and thawing period in spring is longer. The freezing and thawing process in this period has a great influence on the transformation, migration and loss of soil phosphorus. Phosphorus is an important trace element for crop growth and also determines soil productivity. Inorganic phosphorus is the main component of soil phosphorus, and the content of inorganic phosphorus forms is the decisive factor of soil available phosphorus content. Freezing and thawing is one of the important factors affecting the storage and transformation of inorganic phosphorus, which has a direct or indirect effect on the availability and content of phosphorus in soil. A series of physical and chemical processes occurred after the application of phosphate fertilizer into the soil, which affected the effectiveness of the plant. In this experiment, the freezing and thawing environment during the spring thawing period was simulated in laboratory, and the black soil in the northeast of China was taken as the research object. The effects of freeze-thaw cycles (FTC), soil moisture content (W) and soil available phosphorus background value (APB) on the contents of Aluminophosphorus (A1-PN), Fe (P) (P), P (O) (P), and Ca (P) (Ca-P) were studied. According to the above study, the variation rule of inorganic phosphorus form under three factors and the linear relationship between inorganic phosphorus form and available phosphorus Olsen-P were obtained, and the demand of phosphorus fertilizer for crop growth and the optimum soil water content were obtained. And soil phosphorus status and potential environmental risks. The main conclusions are as follows: (1) the effects of freeze-thaw cycles (FTC) on the four inorganic phosphorus forms during freeze-thaw cycles, the contents of inorganic phosphorus in five cycles of freeze-thaw cycles change sharply, and with the increase of cycling times, the contents of inorganic phosphorus change gradually. And most of the forms of the adjacent freeze-thaw cycle treatment reached significant difference. The variance analysis showed that the effect of freezing and thawing cycle times on the absolute content increment of inorganic phosphorus was dominant. (2) soil moisture content (W2) affected the four inorganic phosphorus forms during freeze-thaw cycle. The water content of the four inorganic phosphorus forms is 40% and 60% respectively. When the water content was 40, the difference of absolute content of Al-P, Fe-P and Ca-P was 6.88 mg / kg ~ (-1), 8.18 mg / kg-1 and 7.5 mg / kg ~ (-1), respectively. When the water content was 30 mg / L, the difference of absolute content of closed storage phosphorus O-P was the biggest (36.3 mg / kg ~ (-1). The variance analysis shows that, during the whole freeze-thaw cycle, the moisture content has no significant effect on the closed storage phosphorus O-P. Effect of soil available phosphorus background value on the four inorganic phosphorus forms; during freeze-thaw cycle, the absolute content of four inorganic phosphorus forms increased directly by increasing the background value of available phosphorus. The absolute content of inorganic phosphorus was O-PFe-PAl-PCa-P after freeze-thaw cycle. The background value of available phosphorus was regular in the range of 40 mg kg-1~100 mg kg-1, and the maximum variation of content difference between freezing and thawing was 9.37 mg / kg ~ (-1) mg 路kg ~ (-1) ~ 5.44 mg 路kg ~ (-1) ~ (-1) kg-1 and 7.44 mg 路kg ~ (-1) 路kg ~ (-1), respectively. The analysis of variance shows that the background value of available phosphorus has a dominant effect on the absolute content of inorganic phosphorus forms. (4) the contents of four kinds of inorganic phosphorus forms and the contents of available phosphorus forms are related to each other. On the basis of correlation analysis and path analysis, it was found that Al-P and Fe-P were effective phosphorus sources. The linear relationship between closed phosphorus O-P and Ca-P indirectly affecting available phosphorus content through Al-P and available phosphorus source Al-P X _ (1) P _ (1) O _ (2) and Fe _ (PX _ (2) is as follows: (1) Y = 0.021X _ (2 0.228) X _ (1) ~ (0.028) X _ (2-0.149) X2-(0.104X2-3.486X 36.994m) (P = 0. 021X _ (2) 0.228) (P = 0. 021X _ (2) 0.228) (P = 0. 021).
【學(xué)位授予單位】:沈陽農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:S153.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程憲國,王莉;土壤無機(jī)磷分級方法與應(yīng)用研究的評述[J];北京農(nóng)學(xué)院學(xué)報(bào);1990年02期
2 陳世勇,卜訓(xùn)琴;安徽省幾種主要土壤無機(jī)磷的積累規(guī)律[J];土壤;1998年03期
3 馬保國;麥稻輪作高肥力土壤無機(jī)磷形態(tài)的季節(jié)變化[J];湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年01期
4 封克,汪曉麗,陸海明,趙海濤;風(fēng)干對土壤主要無機(jī)磷組分的影響[J];中國農(nóng)業(yè)科學(xué);2004年06期
5 楊麗娟,張玉龍,劉妤,周崇峻;長期節(jié)水灌溉條件下保護(hù)地土壤無機(jī)磷分級及其有效性研究[J];灌溉排水學(xué)報(bào);2005年03期
6 陳云祥;施用無機(jī)磷肥注意事項(xiàng)[J];科學(xué)養(yǎng)魚;2005年03期
7 趙海濤;封克;汪曉麗;盛海君;;磷在不同土壤和無機(jī)磷組分間的轉(zhuǎn)化研究[J];揚(yáng)州大學(xué)學(xué)報(bào);2006年03期
8 李中陽;李菊梅;徐明崗;呂家瓏;孫楠;;外源磷對土壤無機(jī)磷的影響及有效性[J];中國土壤與肥料;2007年03期
9 劉英;郝會軍;任培華;房師梅;;土壤無機(jī)磷形態(tài)及有效性研究進(jìn)展[J];山東林業(yè)科技;2007年05期
10 楊凱;關(guān)連珠;朱教君;顏麗;;外源腐殖酸對三種土壤無機(jī)磷組分的影響[J];土壤學(xué)報(bào);2009年06期
相關(guān)會議論文 前4條
1 王曰鑫;侯憲文;;腐殖酸對土壤中無機(jī)磷活化效應(yīng)的研究[A];第四屆全國綠色環(huán)保肥料新技術(shù)、新產(chǎn)品交流會論文集[C];2004年
2 李中陽;李菊梅;徐明崗;;長期不施磷肥我國典型土壤無機(jī)磷形態(tài)及速效磷的變化[A];中國土壤學(xué)會第十一屆全國會員代表大會暨第七屆海峽兩岸土壤肥料學(xué)術(shù)交流研討會論文集(上)[C];2008年
3 程艷麗;鄒德乙;鄒丹;束良佐;;棕壤長期不同施肥條件下殘留無機(jī)磷形態(tài)及其轉(zhuǎn)化的研究[A];青年學(xué)者論土壤與植物營養(yǎng)科學(xué)——第七屆全國青年土壤暨第二屆全國青年植物營養(yǎng)科學(xué)工作者學(xué)術(shù)討論會論文集[C];2000年
4 張鐵鷹;孫杰;陳志偉;;生長豬小腸鈉依賴型無機(jī)磷攝入特性的研究[A];動物營養(yǎng)與飼料研究——第五屆全國飼料營養(yǎng)學(xué)術(shù)研討會論文集[C];2006年
相關(guān)碩士學(xué)位論文 前10條
1 喬思宇;凍融循環(huán)作用對黑土無機(jī)磷各形態(tài)含量模擬研究[D];沈陽農(nóng)業(yè)大學(xué);2016年
2 柴立濤;吉林省西部鹽堿土水田磷素養(yǎng)分調(diào)控[D];吉林農(nóng)業(yè)大學(xué);2016年
3 陸海明;土壤無機(jī)磷組成及生物有效性研究[D];揚(yáng)州大學(xué);2003年
4 李中陽;我國典型土壤長期定位施肥下土壤無機(jī)磷的變化規(guī)律研究[D];西北農(nóng)林科技大學(xué);2007年
5 馬志敏;三峽庫區(qū)典型消落帶土壤無機(jī)磷研究[D];西南大學(xué);2009年
6 張海軍;黑龍江省西部草地土壤無機(jī)磷素形態(tài)、轉(zhuǎn)化及有效性[D];東北農(nóng)業(yè)大學(xué);2000年
7 沈乒松;福建主要土壤類型遲效庫態(tài)無機(jī)磷的研究[D];福建師范大學(xué);2006年
8 江晶;長期施肥對土壤無機(jī)磷形態(tài)及其剖面分布的影響[D];甘肅農(nóng)業(yè)大學(xué);2007年
9 秦平;不同解磷菌配比解磷能力比較及解無機(jī)磷基因的克隆[D];黑龍江大學(xué);2007年
10 高飛;黑土磷肥不同用量對無機(jī)磷形態(tài)及玉米苗期生物量的影響[D];吉林農(nóng)業(yè)大學(xué);2008年
,本文編號:1889261
本文鏈接:http://sikaile.net/kejilunwen/nykj/1889261.html