基于RUSLE的黃土高原河龍區(qū)間西岸土壤侵蝕研究
本文選題:河龍區(qū) + RUSLE; 參考:《西華師范大學(xué)》2017年碩士論文
【摘要】:河龍區(qū)間地處黃土高原中游的重點(diǎn)水土流失區(qū),地形破碎,溝壑縱橫,是黃土高原土壤侵蝕最為嚴(yán)重的地區(qū),本文基于RUSLE模型和GIS等軟件,利用DEM、降雨、遙感影像、土壤、土地利用數(shù)據(jù),分析研究了黃土高原河龍區(qū)間西岸近五十多年來的土壤侵蝕情況,主要結(jié)論如下:1、從1956年到1989年,河龍區(qū)西岸土壤侵蝕呈現(xiàn)出下降的趨勢(shì),由1956-1969年的93.73 t·hm~(-2)·a~(-1)下降到1971-989年的79 t·hm~(-2)·a~(-1),研究區(qū)兩個(gè)時(shí)段均為微度侵蝕所占面積最大,分別為44.10%和44.25%,其次為劇烈侵蝕,微度侵蝕、輕度侵蝕和中度侵蝕呈上升趨勢(shì),而強(qiáng)度侵蝕、極強(qiáng)度侵蝕和劇烈侵蝕相反;空間分布上總體西北風(fēng)蝕區(qū)低,東南水蝕區(qū)高,并且水蝕區(qū)北高南低。同時(shí)在進(jìn)行模型計(jì)算時(shí),要注意短時(shí)強(qiáng)降雨對(duì)計(jì)算結(jié)果的影響。2、研究區(qū)不同坡度、不同土地利用類型、不同地貌發(fā)育階段的土壤侵蝕差異明顯。坡度較低的地方以微度侵蝕為主,而坡度大的地方以劇烈侵蝕為主且侵蝕量變化幅度大。旱地和草地在整個(gè)區(qū)域所占面積比例大,土壤侵蝕嚴(yán)重,成為土壤侵蝕的主要來源,其次為林地和未利用地,建設(shè)用地和水田所占面積最小。HI值在0.35-0.5、0.5-0.6的壯年期地貌發(fā)育階段所占面積比例最大,達(dá)到92%,壯年偏幼和壯年偏老階段所占比例分別為5.05%和2.37%,說明研究區(qū)主要處于地貌發(fā)育的壯年階段,地形復(fù)雜,以微度侵蝕和劇烈侵蝕為主。3、研究區(qū)在無植被覆蓋和水土保持措施的影響下,1971-1989年的土壤侵蝕模數(shù)和侵蝕量分級(jí)達(dá)到205.7679 t·hm~(-2)·a~(-1)和15.30億噸,相較于實(shí)際侵蝕量增加了將近三倍,具體分析不同的土地利用類型可知,其中旱地和草地的潛在土壤侵蝕量最大,分別達(dá)到了約6.55億噸和6.96億噸,土壤保持能力最強(qiáng)的為水田。研究表明植被覆蓋和水土保持措施對(duì)土壤侵蝕的抑制作用顯著,在土壤侵蝕的治理中應(yīng)以旱地和草地為治理重點(diǎn)。
[Abstract]:The He-long section is located in the key soil and water loss area in the middle reaches of the Loess Plateau. The terrain is broken and the gully is horizontal and vertical. It is the most serious area of soil erosion on the Loess Plateau. Based on the RUSLE model and GIS software, this paper uses DEM, rainfall, remote sensing image, soil, etc. Land use data were used to analyze and study the soil erosion in the West Bank of the Loess Plateau during the past 50 years. The main conclusions are as follows: 1. From 1956 to 1989, the soil erosion in the West Bank of the Loess Plateau showed a downward trend. It decreased from 93.73 t / hm ~ (-1) in 1956-1969 to 79 t / h ~ (-1) in 1971-989. In the study area, the area of micro-erosion was 44.10% and 44.25% respectively, followed by severe erosion, slight erosion, mild erosion and moderate erosion, while intensity erosion, in the two periods of the study area, was the largest in the study area, which was 44.10% and 44.25% respectively, followed by severe erosion, slight erosion, mild erosion and moderate erosion. The polar intensity erosion is opposite to the severe erosion, and the spatial distribution is generally low in the northwest wind erosion area, high in the southeast water erosion area, and low in the north and south of the water erosion area. At the same time, we should pay attention to the influence of short and strong rainfall on the results of the model calculation. The difference of soil erosion in different slope, different land use type and different geomorphologic development stage in the study area is obvious. Where the slope is low, the erosion is mainly micro-degree, while the area with high slope is dominated by intense erosion, and the amount of erosion varies greatly. Drylands and grasslands account for a large proportion of the total area of the region, with serious soil erosion, which is the main source of soil erosion, followed by woodlands and unused land. The area of construction land and paddy field is the smallest. Hi value is 0.35-0.5 ~ 0.5-0.6, and the proportion of the area is the largest in the stage of geomorphologic development in the period of 0.35-0.5 ~ 0.5-0.6. Reaching 92%, the proportion of young adults and young adults were 5.05% and 2.37% respectively, which indicated that the study area was mainly in the mature stage of geomorphology development, and the topography was complex. Under the influence of no vegetation cover and soil and water conservation measures, the soil erosion modulus and erosion classification reached 205.7679 t / h ~ (-2) a ~ (-1) and 1.53 billion tons in 1971-1989 in the study area, which increased by nearly three times compared with the actual erosion. According to the analysis of different land use types, the potential soil erosion of dryland and grassland was the largest, reaching about 655 million tons and 696 million tons respectively, and the paddy field had the strongest soil conservation capacity. The results showed that vegetation cover and soil and water conservation measures had significant inhibitory effect on soil erosion, and dryland and grassland should be the key in soil erosion control.
【學(xué)位授予單位】:西華師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S157
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王秋霞;張勇;丁樹文;葉馨陽;劉丹露;徐加盼;朱慧鑫;;花崗巖崩崗區(qū)土壤可蝕性因子估算及其空間變化特征[J];中國水土保持科學(xué);2016年04期
2 李宏偉;鄭鈞瀠;彭慶衛(wèi);田耀金;;國外土壤侵蝕預(yù)報(bào)模型研究進(jìn)展[J];中國人口·資源與環(huán)境;2016年S1期
3 白雷超;陳珂;羅明良;林葉彬;周申立;;地表高程剖面特征及其在起伏度分析中的應(yīng)用——以平行嶺谷區(qū)華鎣市為例[J];遙感信息;2016年04期
4 付金霞;張鵬;鄭粉莉;關(guān)穎慧;高燕;;河龍區(qū)間近55a降雨侵蝕力與河流輸沙量動(dòng)態(tài)變化分析[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2016年02期
5 武婕;李玉環(huán);李增兵;方正;鐘豫;;南四湖區(qū)農(nóng)田土壤有機(jī)質(zhì)和微量元素空間分布特征及影響因素[J];生態(tài)學(xué)報(bào);2014年06期
6 祝士杰;湯國安;李發(fā)源;熊禮陽;;基于DEM的黃土高原面積高程積分研究[J];地理學(xué)報(bào);2013年07期
7 劉建祥;李智廣;張曉萍;李銳;許曉鴻;周鴻文;;最近30年河龍區(qū)間降雨侵蝕力的時(shí)空演變特征[J];中國水土保持科學(xué);2013年02期
8 馬芹;張曉萍;萬龍;馬瞳宇;孫艷萍;徐金鵬;雷泳南;;黃土高原河龍區(qū)間最大日雨量(PMP)極值擬合及時(shí)空演變特征[J];水土保持研究;2012年02期
9 冉大川;吳永紅;李雪梅;王富貴;申震洲;;河龍區(qū)間近期人類活動(dòng)減水減沙貢獻(xiàn)率分析[J];人民黃河;2012年02期
10 李斌兵;鄭粉莉;龍棟材;江忠善;;基于GIS紙坊溝小流域土壤侵蝕強(qiáng)度空間分布[J];地理科學(xué);2009年01期
相關(guān)博士學(xué)位論文 前2條
1 張含玉;黃河中游多沙粗沙區(qū)侵蝕產(chǎn)沙變化特征及影響因子分析[D];中國科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2016年
2 劉建祥;近30年河龍區(qū)間侵蝕產(chǎn)沙時(shí)空變化及驅(qū)動(dòng)因子研究[D];中國科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2013年
相關(guān)碩士學(xué)位論文 前7條
1 歐陽潮波;河龍區(qū)間水庫淤積特征及其對(duì)入黃泥沙的影響[D];西北農(nóng)林科技大學(xué);2015年
2 蘇永;基于GIS技術(shù)和USLE模型的環(huán)江縣土壤侵蝕研究[D];廣西師范學(xué)院;2013年
3 付艷玲;近50年來黃河中游典型流域水沙變化趨勢(shì)分析[D];西北農(nóng)林科技大學(xué);2011年
4 陳正發(fā);基于RUSLE模型的重慶市土壤流失方程研究[D];西南大學(xué);2011年
5 曾凌云;基于RUSLE模型的喀斯特地區(qū)土壤侵蝕研究[D];北京大學(xué);2008年
6 李俊;基于DEM的黃土高原坡長的自動(dòng)提取和分析[D];西北大學(xué);2007年
7 盧喜平;紫色土丘陵區(qū)降雨侵蝕力模擬研究[D];西南大學(xué);2006年
,本文編號(hào):1881583
本文鏈接:http://sikaile.net/kejilunwen/nykj/1881583.html