一類帶有外激的非線性動(dòng)力系統(tǒng)的混沌運(yùn)動(dòng)
發(fā)布時(shí)間:2018-07-21 17:58
【摘要】:利用多尺度攝動(dòng)法推導(dǎo)出一類帶有非線性和外部激勵(lì)的兩自由度氣彈性動(dòng)力系統(tǒng)的平均方程,對(duì)于非攝動(dòng)情況下的平均方程,得出其異宿軌存在的條件,并計(jì)算出異宿軌的顯示表達(dá)式,然后利用Melnikov方法得到當(dāng)某些參數(shù)值取特定值時(shí),平均方程的異宿軌破裂,這可能引起Smale馬蹄混沌。最后,將該理論分析結(jié)果應(yīng)用到一個(gè)功能梯度板模型,得出在一定參數(shù)取值下,該模型存在異宿軌破裂引起的Smale馬蹄混沌。
[Abstract]:By using the multi-scale perturbation method, the average equations of a class of two-degree-of-freedom aero-elastic dynamic systems with nonlinear and external excitations are derived. For the non-perturbed average equations, the conditions for the existence of heteroclinic orbits are obtained. The display expression of the heteroclinic orbit is calculated, and the Melnikov method is used to obtain the rupture of the average equation when some parameter values are given, which may cause Smale horseshoe chaos. Finally, the theoretical analysis results are applied to a functional gradient plate model, and the Smale horseshoe chaos caused by the rupture of the heteroclinic orbit is obtained under certain parameters.
【作者單位】: 南京航空航天大學(xué)航空宇航學(xué)院;南京航空航天大學(xué)理學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(11202095) 高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20133218110025)資助
【分類號(hào)】:O322
,
本文編號(hào):2136327
[Abstract]:By using the multi-scale perturbation method, the average equations of a class of two-degree-of-freedom aero-elastic dynamic systems with nonlinear and external excitations are derived. For the non-perturbed average equations, the conditions for the existence of heteroclinic orbits are obtained. The display expression of the heteroclinic orbit is calculated, and the Melnikov method is used to obtain the rupture of the average equation when some parameter values are given, which may cause Smale horseshoe chaos. Finally, the theoretical analysis results are applied to a functional gradient plate model, and the Smale horseshoe chaos caused by the rupture of the heteroclinic orbit is obtained under certain parameters.
【作者單位】: 南京航空航天大學(xué)航空宇航學(xué)院;南京航空航天大學(xué)理學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(11202095) 高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20133218110025)資助
【分類號(hào)】:O322
,
本文編號(hào):2136327
本文鏈接:http://sikaile.net/kejilunwen/lxlw/2136327.html
最近更新
教材專著