假設(shè)位移擬協(xié)調(diào)平面單元應(yīng)變離散算法研究
發(fā)布時間:2018-05-20 09:40
本文選題:有限元 + 擬協(xié)調(diào)元; 參考:《工程力學(xué)》2016年09期
【摘要】:應(yīng)變-位移方程的弱化和離散是擬協(xié)調(diào)有限元列式中的一個基本問題,也是假設(shè)應(yīng)變有限元方法的一個重要問題。該文通過研究擬協(xié)調(diào)有限元中的平面單元列式,考察了不同應(yīng)變離散算法下單元的性能。通過理論分析和數(shù)值實(shí)驗(yàn),證明了對同一個應(yīng)變項(xiàng)的計(jì)算可以選擇不同的應(yīng)變-位移式進(jìn)行計(jì)算,應(yīng)變-位移式的選擇并不影響所構(gòu)造單元的收斂性。該文結(jié)果解決了擬協(xié)調(diào)有限元的一個基礎(chǔ)問題,可以指導(dǎo)擬協(xié)調(diào)有限元的列式,也為一般的彈性力學(xué)數(shù)值分析中應(yīng)變-位移方程的處理提供依據(jù)。
[Abstract]:The weakening and discretization of the strain-displacement equation is a basic problem in the quasi-conforming finite element formulation and an important problem in the hypothetical strain finite element method. In this paper, by studying the plane element formulations in quasi conforming finite element, the performance of the element under different strain discretization algorithms is investigated. Through theoretical analysis and numerical experiments, it is proved that different strain-displacement formulas can be selected for the calculation of the same strain term, and the choice of strain-displacement formula does not affect the convergence of the constructed elements. In this paper, a basic problem of quasi-conforming finite element is solved, which can guide the formulation of quasi-conforming finite element and provide the basis for the treatment of strain-displacement equation in general numerical analysis of elastic mechanics.
【作者單位】: 大連理工大學(xué)工業(yè)裝備結(jié)構(gòu)分析國家重點(diǎn)實(shí)驗(yàn)室運(yùn)載工程與力學(xué)學(xué)部汽車工程學(xué)院;
【分類號】:O343.1;;O241.82
【相似文獻(xiàn)】
相關(guān)博士學(xué)位論文 前1條
1 夏陽;假設(shè)位移擬協(xié)調(diào)有限元及其在精確幾何分析中的應(yīng)用[D];大連理工大學(xué);2013年
,本文編號:1914113
本文鏈接:http://sikaile.net/kejilunwen/lxlw/1914113.html
最近更新
教材專著