Nabla導(dǎo)數(shù)下Hamilton系統(tǒng)的約化
發(fā)布時(shí)間:2018-03-26 12:35
本文選題:Hamilton系統(tǒng) 切入點(diǎn):時(shí)間尺度 出處:《力學(xué)季刊》2017年03期
【摘要】:提出并研究nabla導(dǎo)數(shù)下Hamilton系統(tǒng)的約化問題.依據(jù)nabla導(dǎo)數(shù)下力學(xué)系統(tǒng)的Hamilton原理,建立Hamilton系統(tǒng)的正則方程,給出系統(tǒng)的能量積分和循環(huán)積分;并利用這些積分,約化系統(tǒng)的Hamilton正則方程.結(jié)果表明:約化后的方程仍保持系統(tǒng)的Hamilton正則方程形式,Nabla導(dǎo)數(shù)下力學(xué)系統(tǒng)的約化理論是連續(xù)和離散力學(xué)系統(tǒng)的約化理論的統(tǒng)一和拓展.文中討論了時(shí)間尺度等于實(shí)數(shù)集和整數(shù)集兩種特殊情形下Hamilton系統(tǒng)的約化,并舉例說明了結(jié)果的應(yīng)用.
[Abstract]:The reduction problem of Hamilton system under nabla derivative is proposed and studied. According to the Hamilton principle of mechanical system under nabla derivative, the canonical equations of Hamilton system are established, the energy integral and cyclic integral of the system are given, and these integrals are used. The results show that the reduced equation still maintains the Hamilton canonical equation form of the system. The reductive theory of the mechanical system under the Nabla derivative is the unification and extension of the reductive theory of the continuous and discrete mechanical systems. In this paper, the reduction of Hamilton system with time scale equal to real number set and integer set is discussed. An example is given to illustrate the application of the result.
【作者單位】: 南京理工大學(xué)理學(xué)院;蘇州科技大學(xué)土木工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(11572212,11272227) 江蘇省研究生培養(yǎng)創(chuàng)新工程(KYLX16_0414)
【分類號(hào)】:O316
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王曉軍;郭易圓;王琪;;關(guān)于拉格朗日方程循環(huán)積分的討論[J];力學(xué)與實(shí)踐;2007年03期
2 崔金超;趙U,
本文編號(hào):1667930
本文鏈接:http://sikaile.net/kejilunwen/lxlw/1667930.html
最近更新
教材專著