分?jǐn)?shù)階廣義熱彈性理論下中空柱熱彈性分析
本文關(guān)鍵詞:分?jǐn)?shù)階廣義熱彈性理論下中空柱熱彈性分析 出處:《應(yīng)用力學(xué)學(xué)報》2017年02期 論文類型:期刊論文
更多相關(guān)文章: 分?jǐn)?shù)階 廣義熱彈性 特征值法 Laplace變換 中空柱
【摘要】:基于Laplace變換及特征值法,推導(dǎo)并給出了分?jǐn)?shù)階廣義熱彈性理論下中空柱內(nèi)表面作用有熱沖擊情況的解析解,通過Laplace數(shù)值逆變換法求解得到了位移場、溫度場、應(yīng)力場的分布規(guī)律。結(jié)果表明:特征值法能準(zhǔn)確給出Laplace域內(nèi)方程組的解;分?jǐn)?shù)階參數(shù)對溫度場和應(yīng)力場有較大影響,對位移場影響較小。作為廣義熱彈性理論的一種推廣,在處理熱傳導(dǎo)問題時,通過分?jǐn)?shù)階廣義熱彈性理論進(jìn)行研究更科學(xué)、全面。
[Abstract]:Based on the Laplace transform and the eigenvalue method, the analytical solution of the thermal shock on the inner surface of hollow column under fractional order generalized thermoelastic theory is derived and given. The distribution law of displacement field, temperature field and stress field is obtained by Laplace numerical inverse transformation method. The results show that the eigenvalue method can accurately give the solution of the equations in Laplace domain. Fractional order parameters have great influence on the temperature field and stress field, but have little effect on the displacement field. As a generalization of the generalized thermoelastic theory, it is used to deal with the heat conduction problem. It is more scientific and comprehensive to study the fractional generalized thermoelastic theory.
【作者單位】: 同濟(jì)大學(xué)航空航天與力學(xué)學(xué)院;
【基金】:國家自然科學(xué)基金(11372227) 高等學(xué)校博士點(diǎn)基金(20130072110037)
【分類號】:O343.6
【正文快照】: 隨著科學(xué)技術(shù)的不斷發(fā)展,人們通過眾多實(shí)驗現(xiàn)象發(fā)現(xiàn)經(jīng)典的傅里葉熱傳導(dǎo)定律在某些方面已無法給出準(zhǔn)確的描述[1]。經(jīng)典的傅里葉熱傳導(dǎo)定律認(rèn)為,熱是以無限大速度進(jìn)行傳播的,其忽略了極短時間內(nèi)熱的傳播過程以及材料的微觀尺度效應(yīng)[2-3]。經(jīng)過相關(guān)學(xué)者的不斷努力,人們逐漸發(fā)現(xiàn)了
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王德金;鄭永愛;;分?jǐn)?shù)階混沌系統(tǒng)的延遲同步[J];動力學(xué)與控制學(xué)報;2010年04期
2 楊晨航,劉發(fā)旺;分?jǐn)?shù)階Relaxation-Oscillation方程的一種分?jǐn)?shù)階預(yù)估-校正方法[J];廈門大學(xué)學(xué)報(自然科學(xué)版);2005年06期
3 王發(fā)強(qiáng);劉崇新;;分?jǐn)?shù)階臨界混沌系統(tǒng)及電路實(shí)驗的研究[J];物理學(xué)報;2006年08期
4 夏源;吳吉春;;分?jǐn)?shù)階對流——彌散方程的數(shù)值求解[J];南京大學(xué)學(xué)報(自然科學(xué)版);2007年04期
5 張隆閣;;一類參數(shù)不確定混沌系統(tǒng)的分?jǐn)?shù)階自適應(yīng)同步[J];中國科技信息;2009年15期
6 陳世平;劉發(fā)旺;;一維分?jǐn)?shù)階滲透方程的數(shù)值模擬[J];高等學(xué)校計算數(shù)學(xué)學(xué)報;2010年04期
7 辛寶貴;陳通;劉艷芹;;一類分?jǐn)?shù)階混沌金融系統(tǒng)的復(fù)雜性演化研究[J];物理學(xué)報;2011年04期
8 黃睿暉;;分?jǐn)?shù)階微方程的迭代方法研究[J];長春理工大學(xué)學(xué)報;2011年06期
9 蔣曉蕓,徐明瑜;分形介質(zhì)分?jǐn)?shù)階反常守恒擴(kuò)散模型及其解析解[J];山東大學(xué)學(xué)報(理學(xué)版);2003年05期
10 陳玉霞;高金峰;;一個新的分?jǐn)?shù)階混沌系統(tǒng)[J];鄭州大學(xué)學(xué)報(理學(xué)版);2009年04期
相關(guān)會議論文 前10條
1 李西成;;經(jīng)皮吸收的分?jǐn)?shù)階藥物動力學(xué)模型[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
2 謝勇;;分?jǐn)?shù)階模型神經(jīng)元的動力學(xué)行為及其同步[A];第四屆全國動力學(xué)與控制青年學(xué)者研討會論文摘要集[C];2010年
3 張碩;于永光;王亞;;帶有時滯和隨機(jī)擾動的不確定分?jǐn)?shù)階混沌系統(tǒng)準(zhǔn)同步[A];中國力學(xué)大會——2013論文摘要集[C];2013年
4 李常品;;分?jǐn)?shù)階動力學(xué)的若干關(guān)鍵問題及研究進(jìn)展[A];中國力學(xué)大會——2013論文摘要集[C];2013年
5 李常品;;分?jǐn)?shù)階動力學(xué)簡介[A];第三屆海峽兩岸動力學(xué)、振動與控制學(xué)術(shù)會議論文摘要集[C];2013年
6 蔣曉蕓;徐明瑜;;時間依靠分?jǐn)?shù)階Schr銉dinger方程中的可動邊界問題[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
7 王花;;分?jǐn)?shù)階混沌系統(tǒng)的同步在圖像加密中的應(yīng)用[A];第二屆全國隨機(jī)動力學(xué)學(xué)術(shù)會議摘要集與會議議程[C];2013年
8 王在華;;分?jǐn)?shù)階動力系統(tǒng)的若干問題[A];第三屆全國動力學(xué)與控制青年學(xué)者研討會論文摘要集[C];2009年
9 張碩;于永光;王莎;;帶有時滯和隨機(jī)擾動的分?jǐn)?shù)階混沌系統(tǒng)同步[A];第十四屆全國非線性振動暨第十一屆全國非線性動力學(xué)和運(yùn)動穩(wěn)定性學(xué)術(shù)會議摘要集與會議議程[C];2013年
10 李西成;;一個具有糊狀區(qū)的分?jǐn)?shù)階可動邊界問題的相似解研究[A];中國力學(xué)大會——2013論文摘要集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 陳善鎮(zhèn);兩類空間分?jǐn)?shù)階偏微分方程模型有限差分逼近的若干研究[D];山東大學(xué);2015年
2 任永強(qiáng);油藏與二氧化碳埋存問題的數(shù)值模擬與不確定性量化分析以及分?jǐn)?shù)階微分方程的數(shù)值方法[D];山東大學(xué);2015年
3 蔣敏;分?jǐn)?shù)階微分方程理論分析與應(yīng)用問題的研究[D];電子科技大學(xué);2015年
4 卜紅霞;基于分?jǐn)?shù)階傅里葉域稀疏表征的CS-SAR成像理論與算法研究[D];北京理工大學(xué);2015年
5 楊變霞;分?jǐn)?shù)階Laplace算子的譜理論及其在微分方程中的應(yīng)用[D];蘭州大學(xué);2015年
6 邵晶;幾類微分系統(tǒng)的定性理論及其應(yīng)用[D];曲阜師范大學(xué);2015年
7 方益;分?jǐn)?shù)階Yamabe問題的一些緊性結(jié)果[D];中國科學(xué)技術(shù)大學(xué);2015年
8 王國濤;幾類分?jǐn)?shù)階非線性微分方程解的存在理論及應(yīng)用[D];西安電子科技大學(xué);2014年
9 陳明華;分?jǐn)?shù)階微分方程的高階算法及理論分析[D];蘭州大學(xué);2015年
10 孟偉;基于分?jǐn)?shù)階拓展算子的灰色預(yù)測模型[D];南京航空航天大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 黃志穎;非線性時間分?jǐn)?shù)階微分方程的數(shù)值解法[D];華南理工大學(xué);2015年
2 趙九龍;基于分?jǐn)?shù)階微積分的三維圖像去噪增強(qiáng)算法研究[D];寧夏大學(xué);2015年
3 楚彩虹;單載波分?jǐn)?shù)階傅里葉域均衡系統(tǒng)及關(guān)鍵技術(shù)研究[D];鄭州大學(xué);2015年
4 全曉靜;非線性分?jǐn)?shù)階積分方程的Adomian解法[D];寧夏大學(xué);2015年
5 黃潔;非線性分?jǐn)?shù)階Volterra積分微分方程的小波數(shù)值解法[D];寧夏大學(xué);2015年
6 莊嶠;復(fù)合介質(zhì)中時間分?jǐn)?shù)階熱傳導(dǎo)正逆問題及其應(yīng)用研究[D];山東大學(xué);2015年
7 高素娟;分?jǐn)?shù)階延遲偏微分方程的緊致有限差分方法[D];山東大學(xué);2015年
8 趙珊珊;時—空分?jǐn)?shù)階擴(kuò)散方程的快速算法以及MT-TSCR-FDE的快速數(shù)值解法[D];山東大學(xué);2015年
9 王珍;分?jǐn)?shù)階奇異邊值問題的研究[D];山東師范大學(xué);2015年
10 馮靜;一類分?jǐn)?shù)階奇異脈沖邊值問題正解的存在性研究[D];山東師范大學(xué);2015年
,本文編號:1421378
本文鏈接:http://sikaile.net/kejilunwen/lxlw/1421378.html