基于前視鉆孔圖像的特征提取分類及全景圖合成研究
[Abstract]:Geological exploration is a necessary process before geological engineering. With the development of related technologies, it has become a very important technology in geological exploration to obtain drilling hole wall images by using forward looking drilling imaging technology for geological analysis. At present, there are two main problems in the analysis and processing of forward-looking drilling images. On the one hand, a large number of drilling image analysis and classification work has brought great challenges to technicians; on the other hand, forward-looking drilling images are difficult to synthesize hole wall panoramic images, which limits the analysis level. It is of great significance to use digital image processing and pattern recognition technology to complete classification and synthesize panoramic images of hole wall instead of manual classification, which is of great significance to improve the level of geological analysis and expand the application range of forward looking drilling camera. In this paper, the drilling image is regarded as the research object, and the feature extraction classification and panoramic image synthesis technology of forward looking drilling image are studied. In the aspect of feature extraction and classification technology of forward looking drilling image, this paper introduces the common feature extraction methods based on the traditional feature extraction method, and analyzes its shortcomings, with emphasis on the basic principle and characteristics of Contourlet transform and non-downsampling Contourlet transform, as well as its advantages in natural texture features. By extracting the statistical features of non-downsampled Contourlet transform subband coefficients combined with the Hu invariant moment features of drilling images, and then using variance statistics to select features to form feature vectors, finally, the classification experiments are verified by BP neural network, and satisfactory experimental results are obtained. In the aspect of panoramic image synthesis technology of forward-looking drilling image, the basic principle and imaging characteristics of forward-looking drilling imaging and digital optical imaging are analyzed in this paper, and the feasibility of synthesizing hole wall panoramic image from forward-looking drilling image is determined. through the research of key technologies such as center positioning, annular area expansion and image matching and stitching, a good panoramic image of hole wall is obtained, which lays a foundation for subsequent geological analysis. The algorithms proposed in this paper are verified on Matlab platform, and satisfactory results are obtained, which proves the feasibility of the algorithm.
【學位授予單位】:山東科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P624;TP391.41
【參考文獻】
相關期刊論文 前10條
1 劉樹新;王文杰;;基于數(shù)字鉆孔攝像技術的巖層結構面統(tǒng)計[J];內蒙古煤炭經濟;2017年02期
2 楊程;徐曉剛;王建國;;圖像配準技術研究[J];計算機科學;2016年S2期
3 汪進超;王川嬰;韓增強;胡勝;;基于鉆孔攝像技術的珊瑚礁完整性評價分析[J];中南大學學報(自然科學版);2016年05期
4 朱煉;孫楓;夏芳莉;韓瑜;;圖像融合研究綜述[J];傳感器與微系統(tǒng);2014年02期
5 張鑫;陳偉斌;;Contourlet變換系數(shù)加權的醫(yī)學圖像融合[J];中國圖象圖形學報;2014年01期
6 王華鋒;王玉婷;柴華;;基于紋理特征的測井圖像分類算法的研究[J];計算機研究與發(fā)展;2013年06期
7 趙猛;曹茂永;滕升華;;一種聚類與灰度投影相結合的電子穩(wěn)像方法[J];山東科技大學學報(自然科學版);2013年02期
8 王佳奕;葛玉榮;;基于Contourlet變換和支持向量機的紋理識別方法[J];計算機應用;2013年03期
9 姚旭;王曉丹;張玉璽;權文;;特征選擇方法綜述[J];控制與決策;2012年02期
10 康紅普;司林坡;蘇波;;煤巖體鉆孔結構觀測方法及應用[J];煤炭學報;2010年12期
相關博士學位論文 前3條
1 汪啟偉;圖像直方圖特征及其應用研究[D];中國科學技術大學;2014年
2 廖斌;基于特征點的圖像配準技術研究[D];國防科學技術大學;2008年
3 倪偉;基于多尺度幾何分析的圖像處理技術研究[D];西安電子科技大學;2008年
相關碩士學位論文 前3條
1 尹程果;模式識別中分類器學習能力與泛化性的改進[D];重慶大學;2012年
2 卜富清;基于人工神經網(wǎng)絡的圖像識別和分類[D];成都理工大學;2010年
3 萬宜;基于小波神經網(wǎng)絡的車牌自動識別研究[D];東南大學;2004年
,本文編號:2497552
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2497552.html