采煤機(jī)搖臂振動信號分析及其截割模式識別方法研究
[Abstract]:The shearer is one of the key equipments to realize the safe and efficient production of coal mine. As the main part of the complete set of equipment for fully mechanized coal mining, its intelligent level is the key factor to realize "no man" or "less person" in the fully mechanized mining face. The accurate recognition of cutting pattern is the premise of realizing intelligent mining of shearer, and the vibration signal of the rocker arm of shearer can directly reflect the cutting state of shearer. Therefore, it is necessary to deeply study the vibration signal and cutting mode of the rocker arm of the shearer, so as to lay a foundation for the automatic cutting and adaptive control of the shearer. In the actual working conditions, the coal mining environment is extremely bad, and the rocker arm of the shearer is disturbed by the external actions such as cutting the coal wall, the fuselage attitude abrupt change, the traction speed fluctuation and so on, which is a kind of nonlinear complex noise signal. In this paper, the complex vibration signal of shearer rocker arm is taken as the research object, the feature vector extraction method under different time scales is studied, the classification model of cutting pattern of shearer is established, and the recognition of different cutting pattern is realized based on improved support vector machine. The main work and research results are as follows: (1) based on the analysis of the basic structure and working process of the shearer, the mechanism of vibration signal variation of the rocker arm of the shearer is studied. The feasibility of cutting pattern recognition by acceleration signal is discussed, and the cutting mode categories under different roof, floor and coal seam characteristics are given. (2) aiming at the signal-to-noise ratio of rocker arm complex vibration signal, For the problems of false component and feature dimension, the multi-threshold wavelet packet is used to Denoise the signals in different frequency bands. Based on K.L divergence, the false components in EMD decomposition process are eliminated, and the multi-scale fuzzy entropy feature extraction of vibration signal is realized by combining Laplace score. (3) in order to improve the accuracy of cutting pattern recognition of shearer, A cutting pattern classification method based on improved support vector machine (SVM) is proposed, and an optimization algorithm based on the fusion of artificial fish swarm and particle swarm is studied. The kernel parameters and penalty factors of SVM are optimized. On the basis of this, the frame and realization flow of shearer cutting pattern recognition system are designed. (4) the vibration signal acquisition system of rocker arm is built. The ground experiment was carried out at the National Energy Extractive equipment Research and Development Center of Zhangjiakou Coal Mine Machinery Co., Ltd. The experimental results show that the accuracy of SVM cutting pattern recognition based on the improved fusion algorithm is 98.86%, which is higher than that of artificial fish swarm improved SVM and particle swarm improved SVM 97.71%. The correctness and effectiveness of the proposed method are verified.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD421.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 滕吉文;喬勇虎;宋鵬漢;;我國煤炭需求、探查潛力與高效利用分析[J];地球物理學(xué)報;2016年12期
2 陳坤;陳樹新;吳德偉;楊春燕;王希;李響;吳昊;劉卓崴;;相干態(tài)和壓縮真空態(tài)的自適應(yīng)最優(yōu)估計方法[J];物理學(xué)報;2016年19期
3 喬宗超;唐露新;劉海;;自適應(yīng)濾波算法消除泥漿脈沖信號中的泵沖噪聲[J];儀器儀表學(xué)報;2016年07期
4 毛清華;張旭輝;馬宏偉;邢望;樊紅衛(wèi);;采煤機(jī)搖臂齒輪傳動系統(tǒng)振源定位分析方法[J];振動.測試與診斷;2016年03期
5 曾慶良;許德山;逯振國;張海忠;;基于虛擬儀器的采煤機(jī)自動調(diào)高系統(tǒng)研究[J];中國礦業(yè);2016年05期
6 王洪斌;王世豪;籍冰朔;張航飛;喬永靜;徐劍濤;;基于改進(jìn)多閾值小波包的去噪算法及應(yīng)用[J];計量學(xué)報;2016年02期
7 張?zhí)熨n;龐新宇;楊兆建;;自適應(yīng)小波閾值融合去噪法對采煤機(jī)振動信號的處理[J];太原理工大學(xué)學(xué)報;2016年02期
8 王昕;丁恩杰;胡克想;趙端;;煤巖散射特性對探地雷達(dá)探測煤巖界面的影響[J];中國礦業(yè)大學(xué)學(xué)報;2016年01期
9 李力;魏偉;唐汝琪;;基于改進(jìn)S變換的煤巖界面超聲反射信號處理[J];煤炭學(xué)報;2015年11期
10 叢曉妍;王增才;王保平;彭偉利;;基于EMD與峭度濾波的煤巖界面識別[J];振動.測試與診斷;2015年05期
相關(guān)博士學(xué)位論文 前3條
1 崔新霞;鉆削式采煤機(jī)鉆削系統(tǒng)振動特性研究[D];中國礦業(yè)大學(xué);2014年
2 任芳;基于多傳感器數(shù)據(jù)融合技術(shù)的煤巖界面識別的理論與方法研究[D];太原理工大學(xué);2003年
3 李曉磊;一種新型的智能優(yōu)化方法-人工魚群算法[D];浙江大學(xué);2003年
相關(guān)碩士學(xué)位論文 前9條
1 段蛟龍;基于物聯(lián)網(wǎng)的采煤機(jī)狀態(tài)監(jiān)測及壽命管理系統(tǒng)的開發(fā)[D];太原理工大學(xué);2016年
2 弓曉鳳;基于混沌和小波的采煤機(jī)振動故障的研究[D];西安科技大學(xué);2015年
3 郭會珍;滾筒式采煤機(jī)截割部動力學(xué)特性研究[D];中國礦業(yè)大學(xué);2014年
4 董爍昶;采煤機(jī)截割部齒輪傳動系統(tǒng)振動故障診斷研究[D];河南理工大學(xué);2014年
5 李朋真;采煤機(jī)鉆巖識別及控制方法的研究[D];中國礦業(yè)大學(xué);2014年
6 劉嘯;大采高綜放工作面“三機(jī)”配套選型研究及工程應(yīng)用[D];安徽理工大學(xué);2013年
7 周久華;采煤機(jī)搖臂齒輪箱故障診斷技術(shù)研究[D];重慶理工大學(xué);2013年
8 于鳳英;基于遺傳神經(jīng)網(wǎng)絡(luò)的煤巖界面識別方法的研究[D];太原理工大學(xué);2007年
9 李鐵軍;采煤機(jī)牽引部傳動系統(tǒng)動態(tài)特性研究[D];太原理工大學(xué);2005年
,本文編號:2411427
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2411427.html