天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 礦業(yè)工程論文 >

高壓水射流沖孔煤體裂隙發(fā)育規(guī)律研究

發(fā)布時(shí)間:2018-12-12 08:22
【摘要】:隨著社會(huì)快速發(fā)展,煤炭能源需求量快速增大,各地區(qū)煤炭開采深度逐步加大。煤層深度增加,瓦斯含量升高。低透煤層高瓦斯問題成為煤礦安全生產(chǎn)面臨的主要問題。高壓水射流沖孔增透技術(shù)是煤礦開采過程中解決高瓦斯問題的重要技術(shù)措施。因此,基于高壓水射流沖孔技術(shù),研究沖孔后煤體裂隙發(fā)育規(guī)律對(duì)解決煤層高瓦斯問題具有重要意義。針對(duì)高壓水射流沖孔時(shí)沖孔位置、沖孔角度、沖孔孔徑等參數(shù)進(jìn)行了研究,根據(jù)礦井實(shí)際情況確定了符合現(xiàn)場(chǎng)生產(chǎn)要求的參數(shù)值。運(yùn)用ABAQUS數(shù)值模擬軟件,建立掘進(jìn)工作面高壓水射流沖孔后裂隙發(fā)育模型,通過實(shí)驗(yàn)和分析計(jì)算確定模型基本參數(shù)和邊界條件。建立裂隙發(fā)育的應(yīng)變-能量模型,對(duì)裂隙發(fā)育規(guī)律進(jìn)行研究。研究結(jié)果表明:沖孔后孔壁周圍不同位置、不同方向裂隙發(fā)育情況不同,裂隙發(fā)育先沿直線發(fā)育隨后發(fā)生偏轉(zhuǎn),發(fā)育方向逐漸偏向合應(yīng)力方向。裂隙沿合應(yīng)力方向發(fā)育時(shí)一直沿直線發(fā)育。根究裂隙單方向發(fā)育情況確定整個(gè)平面發(fā)育范圍。通過確定偏轉(zhuǎn)點(diǎn)位置,得到了裂隙發(fā)生偏轉(zhuǎn)后平面內(nèi)裂隙密度的變化。根據(jù)不同密度情況將裂隙發(fā)育范圍進(jìn)行了密度等級(jí)劃分;運(yùn)用ABAQUS數(shù)值模擬軟件,對(duì)裂隙發(fā)育立體軌跡進(jìn)行了研究。結(jié)果表明:軸向應(yīng)變是改變軸向裂隙發(fā)育的主要因素,根據(jù)能量守恒定律分析,確定改變軸向應(yīng)變可改變裂隙沿軸向和垂直軸向發(fā)育的規(guī)律。生產(chǎn)中可根據(jù)需要減小軸向應(yīng)變量,實(shí)現(xiàn)控制裂隙形態(tài)的目的;運(yùn)用掃描電鏡技術(shù),對(duì)沖孔后距孔洞不同方向、不同距離的測(cè)點(diǎn)進(jìn)行分析。結(jié)果表明:現(xiàn)場(chǎng)工作面裂隙發(fā)育情況與模擬情況具有一致性,兩者互相驗(yàn)證,可指導(dǎo)生產(chǎn)實(shí)踐。
[Abstract]:With the rapid development of society, the demand for coal energy increases rapidly, and the coal mining depth increases gradually. The coal seam depth increases and the gas content increases. The problem of low permeability coal seam and high gas becomes the main problem of coal mine safety production. High pressure water jet perforation and antireflection technology is an important technical measure to solve the problem of high gas in coal mining process. Therefore, based on high pressure water jet punching technology, it is of great significance to study the law of coal body fissure development after punching in order to solve the problem of high gas in coal seam. The punching position, punching angle, punching aperture and other parameters during high pressure water jet punching are studied. According to the actual situation of the mine, the parameters that meet the requirements of field production are determined. Using ABAQUS numerical simulation software, the fracture development model after high pressure water jet punching in tunneling face is established. The basic parameters and boundary conditions of the model are determined by experiment and analysis. The strain-energy model of fracture development was established and the regularity of fracture development was studied. The results show that the crack development is different in different directions around the hole wall after punching, and the fracture development first develops along a straight line and then deflects, and the development direction gradually deviates towards the direction of stress convergence. The fracture develops along the straight line when it develops along the direction of the combined stress. The single direction development of the root crack determines the whole plane development range. By determining the position of deflection point, the change of fracture density in plane after fracture deflection is obtained. According to the different density, the fracture development range is divided into density grades, and the three-dimensional trajectory of fracture development is studied by using ABAQUS numerical simulation software. The results show that axial strain is the main factor to change the development of axial fractures. According to the law of conservation of energy, it is determined that the law of fracture development along axial and vertical direction can be changed by changing axial strain. In production, the axial strain can be reduced according to the need, and the fracture shape can be controlled. The measuring points in different directions and distances from the hole after punching are analyzed by using the scanning electron microscope technology. The results show that the development of the crack in the working face is consistent with the simulation, and the mutual verification between them can guide the production practice.
【學(xué)位授予單位】:華北理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD712

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 黃飛;盧義玉;劉小川;敖翔;李良偉;;高壓水射流沖擊作用下橫觀各向同性巖石破碎機(jī)制[J];巖石力學(xué)與工程學(xué)報(bào);2014年07期

2 盧義玉;黃飛;王景環(huán);劉小川;;超高壓水射流破巖過程中的應(yīng)力波效應(yīng)分析[J];中國(guó)礦業(yè)大學(xué)學(xué)報(bào);2013年04期

3 穆朝民;王海露;;煤體在高壓水射流作用下的損傷機(jī)制[J];巖土力學(xué);2013年05期

4 聶建國(guó);王宇航;;ABAQUS中混凝土本構(gòu)模型用于模擬結(jié)構(gòu)靜力行為的比較研究[J];工程力學(xué);2013年04期

5 廖志強(qiáng);陳東春;劉鑫;;采煤工作面卸壓帶寬度確定及分析[J];能源技術(shù)與管理;2012年03期

6 程慶迎;黃炳香;李增華;;煤的孔隙和裂隙研究現(xiàn)狀[J];煤炭工程;2011年12期

7 翟成;李賢忠;李全貴;;煤層脈動(dòng)水力壓裂卸壓增透技術(shù)研究與應(yīng)用[J];煤炭學(xué)報(bào);2011年12期

8 蔡如法;童校長(zhǎng);;穿層鉆孔掏穴增透強(qiáng)化抽采瓦斯技術(shù)研究[J];安徽建筑工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);2011年04期

9 司海寶;蔡正銀;;基于ABAQUS建立土體本構(gòu)模型庫的研究[J];巖土力學(xué);2011年02期

10 羅素蓉;李豪;;纖維自密實(shí)混凝土斷裂能試驗(yàn)研究[J];工程力學(xué);2010年12期

相關(guān)博士學(xué)位論文 前7條

1 江紅祥;高壓水射流截割頭破巖性能及動(dòng)力學(xué)研究[D];中國(guó)礦業(yè)大學(xué);2015年

2 呂哲;超聲振動(dòng)輔助磨料水射流拋光沖蝕機(jī)理和工藝技術(shù)研究[D];山東大學(xué);2015年

3 黃飛;水射流沖擊瞬態(tài)動(dòng)力特性及破巖機(jī)理研究[D];重慶大學(xué);2015年

4 王耀鋒;三維旋轉(zhuǎn)水射流與水力壓裂聯(lián)作增透技術(shù)研究[D];中國(guó)礦業(yè)大學(xué);2015年

5 張嘉勇;高壓小射流掏槽防突技術(shù)研究[D];中國(guó)礦業(yè)大學(xué);2011年

6 翟成;近距離煤層群采動(dòng)裂隙場(chǎng)與瓦斯流動(dòng)場(chǎng)耦合規(guī)律及防治技術(shù)研究[D];中國(guó)礦業(yè)大學(xué);2008年

7 朱洪濤;精密磨料水射流加工硬脆材料沖蝕機(jī)理及拋光技術(shù)研究[D];山東大學(xué);2007年

相關(guān)碩士學(xué)位論文 前3條

1 賈君玉;混凝土裂縫擴(kuò)展仿真系統(tǒng)研究[D];大連理工大學(xué);2012年

2 許雙泉;鉆孔預(yù)抽煤層瓦斯數(shù)值模擬及應(yīng)用[D];西安科技大學(xué);2010年

3 雷向陽;高圍壓下前混合磨料射流的切割機(jī)理及實(shí)驗(yàn)研究[D];重慶大學(xué);2003年

,

本文編號(hào):2374258

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/kuangye/2374258.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶08115***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com