BCOISOA-BP網(wǎng)絡(luò)在磨礦粒度軟測量中的應(yīng)用
[Abstract]:Traditional crowd search (SOA) algorithm is optimized by calculating search direction, searching step size and searching update individual position. Its disadvantages are that it has a large amount of computation and less information exchange between populations, which results in a slow speed of optimization. In view of the shortcomings of the crowd search algorithm, this paper proposes a binomial crossover operator to improve the population search algorithm (BCOISOA). In the aspect of calculating search step size, the product of random number and maximum function value is used to determine the position of subgroup, and the calculation rate of global optimization is improved. In the aspect of updating position, this paper proposes a binomial crossover operator to strengthen the relationship between populations, so as to avoid premature convergence of the algorithm due to local optimum in the process of updating search direction, and then achieve the purpose of finding the optimal solution quickly and accurately. In this paper, the improved crowd search (BP) neural network algorithm of the above two crossover operators is applied to the two-stage grinding process to realize on-line soft measurement of grinding particle size. The simulation results show that compared with the crowd search algorithm and particle swarm optimization algorithm, the binomial crossover operator can improve the convergence speed of crowd search algorithm faster and the prediction accuracy is the highest, and meet the requirements of real-time detection of grinding granularity.
【作者單位】: 河北工業(yè)大學(xué)控制科學(xué)與工程學(xué)院;北京科技大學(xué)自動化學(xué)院;
【基金】:河北省高等學(xué)?茖W(xué)技術(shù)研究資助項目(ZD2016071)
【分類號】:TD921.4;TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 A.B.博爾特尼科夫;E.B.奧爾洛娃;B.M.巴利亞斯諾娃;萬起;;關(guān)于確定合理的磨礦粒度問題[J];國外金屬礦山;1991年12期
2 丘德鑣;怎樣確定最佳磨礦粒度[J];礦冶工程;1991年03期
3 王新華;桂衛(wèi)華;王雅琳;陽春華;;混合核函數(shù)支持向量機(jī)的磨礦粒度預(yù)測模型[J];計算機(jī)工程與應(yīng)用;2010年12期
4 李茂林;崔瑞;王非;向文娟;曾凡霞;;階段磨選磨礦粒度劃分的理論分析與計算[J];礦冶工程;2011年01期
5 何桂春,毛益平,倪文;基于多神經(jīng)網(wǎng)絡(luò)的磨礦粒度軟測量模型[J];金屬礦山;2005年02期
6 郭素紅;劉威;;某鉀鹽礦磨礦粒度對浮選效果影響的試驗研究[J];有色金屬(選礦部分);2009年04期
7 張劍鋒;;梅山原礦及二次分級溢流降硫試驗研究[J];現(xiàn)代礦業(yè);2009年10期
8 楊曉峰;陳景明;;回收赤鐵礦尾礦工藝中合適的磨礦粒度及設(shè)備研究[J];礦業(yè)工程;2013年06期
相關(guān)會議論文 前1條
1 楊曉峰;陳景明;;浮選尾礦再選工藝中的合適的磨礦粒度與設(shè)備研究[A];晉瓊粵川魯冀遼七省金屬(冶金)學(xué)會第二十一屆礦業(yè)學(xué)術(shù)交流會論文集[C];2014年
相關(guān)碩士學(xué)位論文 前1條
1 劉德明;基于支持向量回歸的磨礦粒度軟測量及其軟件實現(xiàn)[D];遼寧科技大學(xué);2012年
,本文編號:2277053
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2277053.html