煤礦巷道錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)多目標(biāo)進(jìn)化優(yōu)化設(shè)計方法
本文選題:錨護(hù)網(wǎng)絡(luò) + 支護(hù)質(zhì)量; 參考:《中國礦業(yè)大學(xué)》2017年碩士論文
【摘要】:巷道支護(hù)作為保障煤礦安全生產(chǎn)的重要手段,一直受到煤礦企業(yè)和研究機(jī)構(gòu)的廣泛關(guān)注。在諸多支護(hù)方式中,錨桿支護(hù)是一種主動支護(hù),具有結(jié)構(gòu)簡單、施工方便、便于對圍巖主動加固等優(yōu)點(diǎn),已在實際的煤礦生產(chǎn)中得到了廣泛應(yīng)用;相應(yīng)的,由錨桿和錨索構(gòu)成的錨護(hù)網(wǎng)絡(luò)成為提高巷道圍巖穩(wěn)定性的有效方法。錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)的合理性決定了支護(hù)巷道的穩(wěn)定性,在錨護(hù)網(wǎng)絡(luò)中,錨桿數(shù)量越多,巷道的安全性越高,但是,這也提高了支護(hù)成本,增加了支護(hù)時間,從而降低了采掘效率。如果錨護(hù)網(wǎng)絡(luò)包含的錨桿少,那么,將難以維持巷道圍巖的穩(wěn)定性,使得巷道冒頂、片幫。此時,需要多次錨桿補(bǔ)打,從而增加了支護(hù)成本,降低了支護(hù)效率?梢,在巷道斷面形狀及其地質(zhì)條件已知時,選取合適的支護(hù)形式和錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu),是保證巷道支護(hù)安全、經(jīng)濟(jì)和高效的關(guān)鍵問題。首先,針對現(xiàn)有錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計方法的不足,提出了錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)多目標(biāo)進(jìn)化優(yōu)化設(shè)計方法。該方法構(gòu)建了兼顧支護(hù)質(zhì)量、支護(hù)成本和支護(hù)時間等三個目標(biāo)的錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)多目標(biāo)數(shù)學(xué)模型,模型中的支護(hù)質(zhì)量通過構(gòu)建支護(hù)質(zhì)量代理模型進(jìn)行描述。進(jìn)而,采用多目標(biāo)優(yōu)化算法求解數(shù)學(xué)模型,得到一組最優(yōu)錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)方案集。面向某一實際巷道,基于所提方法獲取最優(yōu)錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)方案集。實驗結(jié)果表明最優(yōu)錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)方案集能夠兼顧支護(hù)質(zhì)量和支護(hù)成本等多個優(yōu)化指標(biāo),與已有的優(yōu)化后的設(shè)計方案相比,有了更多選擇。另外,開發(fā)了以該方法為理論基礎(chǔ)的錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)多目標(biāo)優(yōu)化設(shè)計系統(tǒng),為將錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)多目標(biāo)進(jìn)化優(yōu)化設(shè)計方法應(yīng)用于實際工程中提供了切實可行的途徑。其次,考慮到?jīng)Q策者期望獲得滿足偏好的某一錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu),且偏好難以預(yù)先獲得,提出交互式偏好下的錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)多目標(biāo)進(jìn)化設(shè)計方法。該方法在進(jìn)化初始階段,基于語義描述的偏好,以目標(biāo)空間的最差點(diǎn)劃分先驗偏好區(qū)域,保證了偏好區(qū)域劃分的合理性;在進(jìn)化過程中,基于從候選解中所選的滿意解,動態(tài)遷移和縮放偏好區(qū)域,以精準(zhǔn)定位決策者的偏好;在決策者偏好取向發(fā)生變化時,給出相應(yīng)的檢測方法和應(yīng)對策略,以及時跟蹤決策者偏好的變化。面向某一實際巷道,實驗驗證了采用所提方法設(shè)計錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)時,不但縮小了搜索空間,而且提高了設(shè)計效率。最后,考慮到錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)多目標(biāo)數(shù)學(xué)模型中的支護(hù)質(zhì)量代理模型精度不高的不足,提出了交互式偏好下的支護(hù)質(zhì)量代理模型更新策略。首先,將融入交互過程的多目標(biāo)進(jìn)化算法與支護(hù)質(zhì)量代理模型的更新并行化,在縮短設(shè)計周期的同時,減輕了決策者的疲勞程度;然后,在進(jìn)化算法求解的過程中,根據(jù)優(yōu)勢進(jìn)化方向給出支護(hù)質(zhì)量代理模型更新條件和新增樣本點(diǎn)選取準(zhǔn)則,以提高支護(hù)質(zhì)量代理模型在偏好區(qū)域內(nèi)的精度,針對已有的靜態(tài)支護(hù)質(zhì)量代理模型,采用本方法進(jìn)行更新,實驗結(jié)果表明,基于更新后的支護(hù)質(zhì)量代理模型獲得的最優(yōu)錨護(hù)網(wǎng)絡(luò)結(jié)構(gòu)可靠性更高。
[Abstract]:As an important means to ensure the safe production of coal mine, roadway support has been widely concerned by coal mine enterprises and research institutions. In many supporting methods, bolt support is a kind of active support, which has the advantages of simple structure, convenient construction and easy to reinforce the surrounding rock. It has been widely used in the actual coal mine production; The anchoring network made up of anchor and anchor has become an effective method to improve the stability of the roadway surrounding rock. The rationality of the structure of the anchor network determines the stability of the supporting roadway. In the anchor network, the more the bolt number and the safety of the roadway, the higher the cost of the support, the increase of the support time and the reduction of the excavation. Efficiency. If the anchor network contains fewer bolts, it will be difficult to maintain the stability of the surrounding rock of the roadway, make the roadway roof and help. At this time, many bolts need to be supplementing, thus increasing the cost of support and reducing the support efficiency. It is obvious that when the shape of the tunnel section and its geological conditions are known, the appropriate support form and the anchor network are selected. Structure is the key problem to ensure the safety of roadway support, economy and high efficiency. Firstly, in view of the shortage of the existing design method of the existing anchor network structure, a multi-objective evolutionary optimization design method of the anchor network structure is proposed. The method constructs the multi target number of the anchor network structure with three targets, such as the support quality, the support cost and the support time. The support quality in the model is described by the construction of the support quality agent model. Then, the multi-objective optimization algorithm is used to solve the mathematical model, and a set of optimal anchor network structure schemes are obtained. The optimal anchor network structure scheme is obtained based on the proposed approach, and the experimental results show the optimal anchor net. The complex structure scheme set can take account of the multiple optimization indexes such as the support quality and the support cost. Compared with the existing optimized design schemes, there are more choices. In addition, the multi-objective optimization design system of the anchor network structure based on this method is developed, which is applied to the multi-objective evolutionary optimization design method of the anchor network structure. Practical ways are provided in practical engineering. Secondly, considering that the decision-makers expect to obtain a certain anchor network structure which satisfies the preference, and the preference is difficult to obtain in advance, the multi objective evolutionary design method of the anchor network structure under the interactive preference is proposed. This method is based on the preference of semantic description in the initial stage of evolution, and the target space is in the target space. The difference division of the prior preference region ensures the rationality of the partition of the preference region; in the process of evolution, based on the satisfactory solutions selected from the candidate solutions, the dynamic migration and scaling of preference regions are used to accurately locate the preference of the decision-makers; the corresponding detection methods and coping strategies are given when the preference orientation of the decision-makers is changed, and the time follows. In a practical tunnel, the experiment verifies that the design of the anchor network structure by using the proposed method not only reduces the search space, but also improves the design efficiency. Finally, considering the insufficient precision of the support quality model in the multi-objective mathematical model of the anchor network structure, the interactive deviation is proposed. First, the multi-objective evolutionary algorithm and the update of the support quality agent model are merged into the interactive process. At the same time, the fatigue degree of the decision-makers is reduced while the design cycle is shortened. Then, the support quality agent is given in the evolutionary direction of the evolutionary algorithm in accordance with the dominant evolutionary direction. The model updating condition and the new sample point selection criteria are used to improve the precision of the support quality agent model in the preference region. This method is used to update the existing static support quality agent model. The experimental results show that the optimal anchor network structure based on the updated support quality agent model is more reliable.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD353
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Bin Duan;Minqing Luo;Chao Yuan;Xiaobing Luo;;Multi-objective hydraulic optimization and analysis in a minipump[J];Science Bulletin;2015年17期
2 鄭金華;謝諄志;;關(guān)于如何用角度信息引入決策者偏好的研究[J];電子學(xué)報;2014年11期
3 鞏敦衛(wèi);王更星;孫曉燕;;高維多目標(biāo)優(yōu)化問題融入決策者偏好的集合進(jìn)化優(yōu)化方法[J];電子學(xué)報;2014年05期
4 邱飛岳;吳裕市;邱啟倉;王麗萍;;基于雙極偏好占優(yōu)的高維目標(biāo)進(jìn)化算法[J];軟件學(xué)報;2013年03期
5 余銀;孫占成;孟國勝;侯振勝;;近距離煤層巷道錨桿錨索聯(lián)合支護(hù)參數(shù)數(shù)值模擬研究[J];山西大同大學(xué)學(xué)報(自然科學(xué)版);2012年06期
6 朱永建;馮濤;;錨桿支護(hù)超長煤巷頂板穩(wěn)定性動態(tài)分類研究[J];煤炭學(xué)報;2012年04期
7 彭磊;劉莉;龍騰;;基于動態(tài)徑向基函數(shù)代理模型的優(yōu)化策略[J];機(jī)械工程學(xué)報;2011年07期
8 魏延誠;汪仁和;張杰;;基于MATLAB神經(jīng)網(wǎng)絡(luò)在巷道支護(hù)參數(shù)設(shè)計中的應(yīng)用[J];煤炭工程;2010年12期
9 ;Application of GA-SVM in classification of surrounding rock based on model reliability examination[J];Mining Science and Technology;2010年03期
10 楊咚咚;焦李成;公茂果;余航;;求解偏好多目標(biāo)優(yōu)化的克隆選擇算法[J];軟件學(xué)報;2010年01期
相關(guān)博士學(xué)位論文 前3條
1 王向前;基于案例推理的煤礦回采巷道支護(hù)決策系統(tǒng)研究[D];安徽理工大學(xué);2014年
2 李恩穎;近似模型優(yōu)化體系關(guān)鍵技術(shù)研究及應(yīng)用[D];湖南大學(xué);2009年
3 安偉剛;多目標(biāo)優(yōu)化方法研究及其工程應(yīng)用[D];西北工業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前1條
1 仇桂勇;土壓平衡式盾構(gòu)機(jī)刀盤性能仿真分析與多目標(biāo)優(yōu)化設(shè)計技術(shù)研究[D];浙江大學(xué);2010年
,本文編號:2083075
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2083075.html