天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 礦業(yè)工程論文 >

油頁(yè)巖原位開(kāi)采地下冷凍墻溫度場(chǎng)的理論及實(shí)驗(yàn)研究

發(fā)布時(shí)間:2018-06-28 22:26

  本文選題:油頁(yè)巖原位開(kāi)采 + 冷凍墻 ; 參考:《吉林大學(xué)》2015年博士論文


【摘要】:對(duì)于中國(guó)而言,目前所生產(chǎn)的原油遠(yuǎn)不能滿足本國(guó)的需求,2014年中國(guó)進(jìn)口原油3.08億噸,是歷年來(lái)最高的,同比去年增長(zhǎng)9.4%,也是漲幅最高的一年。實(shí)際上從1993年開(kāi)始,中國(guó)已經(jīng)成為石油凈進(jìn)口國(guó),而且對(duì)國(guó)外資源的依賴程度越來(lái)越高。為了緩解這種現(xiàn)狀,我國(guó)高度重視對(duì)非常規(guī)油氣資源的勘探開(kāi)發(fā)和利用。我國(guó)的油頁(yè)巖資源儲(chǔ)量豐富,作為常規(guī)能源的代替能源,潛力非常巨大。 在目前政府對(duì)環(huán)保要求越來(lái)越苛刻的大背景下,對(duì)于油頁(yè)巖的勘探和開(kāi)發(fā)采取地下原位開(kāi)采的方式成為必然選擇。而地下冷凍墻技術(shù)是油頁(yè)巖地下原位開(kāi)采過(guò)程中的一個(gè)關(guān)鍵技術(shù),其作用主要有兩點(diǎn),一是防止開(kāi)采區(qū)以外的地下水流入到開(kāi)采區(qū)內(nèi),這樣就可以保證開(kāi)采區(qū)內(nèi)的油頁(yè)巖可以被正常加熱從而熱解產(chǎn)生油和氣,二是防止開(kāi)采區(qū)內(nèi)部的油頁(yè)巖被熱解后生成的油氣產(chǎn)物泄露到開(kāi)采區(qū)外面,這樣既可以減少油和氣的損失,又能防止開(kāi)采區(qū)外部被污染。 由于油頁(yè)巖礦區(qū)的開(kāi)采范圍一般都很大,考慮到在加熱區(qū)與凍結(jié)區(qū)之間還存在緩沖區(qū),故所需要的地下冷凍墻的直徑相應(yīng)的會(huì)更大。再加之油頁(yè)巖埋藏深度一般較深,那么要形成一個(gè)滿足地下原位開(kāi)采條件的地下冷凍墻就會(huì)是一個(gè)非常龐大的工程,其凍結(jié)時(shí)間一般要2年甚至更久,能量消耗大,工程費(fèi)用高。因此,,如何優(yōu)化凍結(jié)過(guò)程中的各個(gè)影響凍結(jié)壁形成的凍結(jié)參數(shù),合理的加快地下冷凍墻凍結(jié)壁的交圈速度,從而縮短工期,盡可能的降低成本,節(jié)約經(jīng)費(fèi)是冷凍墻工程必須要研究和解決的問(wèn)題。本文通過(guò)理論和實(shí)驗(yàn)研究的方法來(lái)尋求解決此問(wèn)題的辦法。 介紹了影響地層溫度場(chǎng)分布的土體的熱物理性質(zhì),并以此為基礎(chǔ),運(yùn)用能量守恒定律推導(dǎo)得出了地下冷凍墻溫度場(chǎng)的導(dǎo)熱微分方程。然后分別研究了埋管換熱器內(nèi)壁為恒溫條件和恒熱流密度條件兩種情況下的地下冷凍墻溫度場(chǎng)的數(shù)學(xué)描述和其數(shù)值解法,其中恒溫條件下可以視為穩(wěn)態(tài)溫度場(chǎng)導(dǎo)熱問(wèn)題,而恒熱流密度條件下則視為非穩(wěn)態(tài)溫度場(chǎng)導(dǎo)熱問(wèn)題。最后將此數(shù)學(xué)描述的基礎(chǔ)理論應(yīng)用到地下冷凍墻的實(shí)際工程中,在簡(jiǎn)單論述了地層凍結(jié)過(guò)程之后,分別計(jì)算了埋管換熱器的換熱能力及其凍結(jié)時(shí)間,給出了凍結(jié)壁的平均凍結(jié)溫度,并最終得出了地下冷凍墻溫度場(chǎng)的數(shù)學(xué)模型和其單值條件。 利用ANSYS軟件分別對(duì)載冷液的流量、凍結(jié)孔的間距、凍結(jié)孔的孔徑以及凍結(jié)方式對(duì)凍結(jié)壁交圈時(shí)間和溫度場(chǎng)分布的影響規(guī)律進(jìn)行了模擬分析。并模擬分析了各參數(shù)的最優(yōu)耦合。得出以下結(jié)論:在保持凍結(jié)孔間距、孔徑和凍結(jié)方式不變的情況下,增加載冷液的流量可以減少凍結(jié)壁的交圈時(shí)間,但是當(dāng)其流量增加到一定程度后,繼續(xù)增加流量對(duì)凍結(jié)壁交圈時(shí)間的影響并不明顯;在保持載冷液流量、凍結(jié)孔孔徑和凍結(jié)方式不變的情況下,增加凍結(jié)孔的間距會(huì)增大凍結(jié)壁的交圈時(shí)間,而且間距越大,其交圈時(shí)間的增加量就會(huì)越大;在保持載冷液流量、凍結(jié)孔間距和凍結(jié)方式不變的情況下,增加凍結(jié)孔的孔徑會(huì)減少凍結(jié)壁的交圈時(shí)間,而且此時(shí)間-孔徑的曲線幾乎是線性的;在保持載冷液流量、凍結(jié)孔間距及孔徑不變的情況下,采用局部?jī)鼋Y(jié)的方式進(jìn)行凍結(jié)會(huì)減少凍結(jié)壁的交圈時(shí)間;得到最優(yōu)組合實(shí)驗(yàn)為:載冷液流量為20m3/h,凍結(jié)孔間距為1m,凍結(jié)孔孔徑為90mm。 根據(jù)實(shí)驗(yàn)的需要建立了油頁(yè)巖原位開(kāi)采地下冷凍墻溫度場(chǎng)的實(shí)驗(yàn)平臺(tái),并在實(shí)驗(yàn)平臺(tái)上進(jìn)行了相應(yīng)的實(shí)驗(yàn),最終得到的結(jié)論與模擬計(jì)算所得到的結(jié)論基本一致。但是,實(shí)驗(yàn)所需的凍結(jié)壁交圈時(shí)間總體上比模擬計(jì)算所需的時(shí)間更短。 經(jīng)過(guò)理論分析、模擬計(jì)算和實(shí)驗(yàn)研究,得出如下結(jié)論:在保持其他各參數(shù)不變的情況下,凍結(jié)壁的交圈時(shí)間隨著載冷液流量的增大而減小,但隨著流量的增大,其交圈時(shí)間的減小幅度會(huì)越來(lái)越。辉诒3制渌鲄(shù)不變的情況下,凍結(jié)壁的交圈時(shí)間隨著凍結(jié)孔間距的增大而增大,而且隨著凍結(jié)孔間距的增大,其交圈時(shí)間的增大幅度會(huì)越來(lái)越大;在保持其他各參數(shù)不變的情況下,凍結(jié)壁的交圈時(shí)間隨著凍結(jié)孔孔徑的增大而增大,且二者幾乎是線性的變化關(guān)系;另外,局部?jī)鼋Y(jié)的凍結(jié)方式會(huì)減少凍結(jié)壁的交圈時(shí)間,而且更節(jié)能,更環(huán)保;而最優(yōu)組合實(shí)驗(yàn)為:載冷液流量為20m3/h,凍結(jié)孔間距為1m,凍結(jié)孔孔徑為90mm。
[Abstract]:As far as China is concerned, the crude oil produced now is far from its own demand. In 2014, China imported 3.08 billion tons of crude oil, the highest in the past year, up 9.4% last year, and the highest increase in the year. Since 1993, China has become a net importer of oil, and the degree of dependence on foreign resources is becoming higher and higher. In order to alleviate this situation, China attaches great importance to the exploration, exploitation and utilization of unconventional oil and gas resources. The reserves of oil shale in China are abundant. As a substitute for energy from conventional energy, the potential is very great.
Under the current government's increasingly demanding environment for environmental protection, it is an inevitable choice for the exploration and development of oil shale by underground mining in situ, and the underground freezing wall technology is a key technology in the process of in situ exploitation of oil shale. The main effect is two points, one is to prevent underground water outside the mining area. In the mining area, it can ensure that the oil shale in the mining area can be heated by normal heating to produce oil and gas, and the two is to prevent the oil and gas products produced from the oil shale after the pyrolysis of the mining area to the outside of the mining area, which can reduce the loss of oil and gas and prevent the pollution from the outside of the mining area.
As the mining area of oil shale is generally large, considering that there is a buffer zone between the heating area and the freezing zone, the diameter of the underground frozen wall will be larger. In addition, the depth of the buried depth of the oil shale is generally deep. The freezing time is usually 2 years or even longer, the energy consumption is large and the cost of the engineering is high. Therefore, how to optimize the freezing parameters which affect the freezing wall formed during the freezing process and speed up the speed of the freezing wall of the frozen wall, thus shorten the short working period, reduce the cost as much as possible, and save the funds for the frozen wall workers We must study and solve problems in the process. This paper seeks to solve this problem through theoretical and experimental research methods.
This paper introduces the thermal physical properties of the soil which affects the distribution of the temperature field of the formation. On the basis of this, the differential equation of heat conduction in the temperature field of the underground freezing wall is derived by using the law of conservation of energy. Then the number of temperature fields of the underground freezing wall under the two conditions of the inner wall of the tube heat exchanger and the constant heat flow density condition are respectively studied. The study description and its numerical solution, in which the constant temperature condition can be regarded as the heat conduction problem of the steady temperature field, and the constant heat flow density is considered as the heat conduction problem of the unsteady temperature field. Finally, the basic theory of this mathematical description is applied to the practical engineering of the underground freezing wall. The average freezing temperature of the freezing wall is given, and the mathematical model of the temperature field of the underground freezing wall and its single value condition are finally obtained.
ANSYS software is used to simulate the influence of the flow of the cooling fluid, the spacing of the freezing hole, the pore size of the frozen hole and the freezing way on the distribution of the time and the temperature field of the freezing wall. The optimal coupling of the parameters is simulated and analyzed. The following conclusions are drawn: holding the distance of the freezing hole, the pore size and the freezing method remain unchanged. In the case of increasing the flow of the cooling liquid, the turning time of the frozen wall can be reduced, but when the flow rate is increased to a certain extent, the effect of the continuous increase of the flow rate on the turning time of the frozen wall is not obvious. The increase of the freezing hole spacing will increase the freezing wall in the condition of keeping the flow of the frozen wall, the pore diameter of the freezing hole and the freezing method unchanged. The greater the interval time and the larger the spacing, the greater the increase in the time of the interlocking. In the case of keeping the flow of the coolant, the spacing of the freezing hole and the freezing method invariable, the increase of the pore diameter of the freezing hole will reduce the time of the interlocking of the frozen wall, and the curve of the time aperture is almost linear; the volume of the cooling fluid and the spacing of the freezing hole are maintained. When the aperture is constant, the freezing wall will be reduced by freezing in the way of local freezing. The optimum combination experiment is that the flow rate of the carrier cooling liquid is 20m3/h, the spacing of the frozen hole is 1m, the pore size of the frozen hole is 90mm.
According to the needs of the experiment, the experimental platform for the temperature field of the underground frozen wall in situ for oil shale is established, and the experimental results are carried out on the experimental platform. The final conclusion is basically the same as that obtained from the simulation calculation. However, the time required for the freezing wall in the experiment is shorter than the time required by the simulated calculation.
Through theoretical analysis, simulation calculation and experimental study, the following conclusion is drawn: in the case of keeping the other parameters constant, the turning time of the frozen wall decreases with the increase of the flow rate of the carrier cooling liquid, but with the increase of the flow rate, the decrease of the time of the turning circle will become smaller and smaller, and the freezing is frozen under the condition of keeping the other parameters constant. The turning time of the wall increases with the increase of the spacing of the frozen hole, and with the increase of the spacing of the frozen hole, the increasing amplitude of the turning time will become larger and larger. In the case of keeping the other parameters constant, the time of the intersection of the frozen wall increases with the increase of the pore size of the frozen hole, and the two are almost linear change relations. In addition, The freezing method of local freezing will reduce the turning time of the frozen wall, and more energy saving and more environmental protection. The optimal combination experiment is that the flow rate of the carrier cooling liquid is 20m3/h, the spacing of the frozen hole is 1m, the pore size of the frozen hole is 90mm.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TD83

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 徐士良;立井多排管凍結(jié)溫度場(chǎng)的數(shù)學(xué)模型研究[J];安徽建筑工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);2004年03期

2 徐士良;ANSYS在凍結(jié)壁溫度場(chǎng)分布分析中的運(yùn)用[J];安徽建筑工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);2005年02期

3 朱元林,張家懿,彭萬(wàn)巍,沈忠言,苗麗娜;凍土的單軸壓縮本構(gòu)關(guān)系[J];冰川凍土;1992年03期

4 余群,張招祥,沈震亞,陸海鷹;凍土的瞬態(tài)變形和強(qiáng)度特性[J];冰川凍土;1993年02期

5 劉為民,何平,張釗;土體導(dǎo)熱系數(shù)的評(píng)價(jià)與計(jì)算[J];冰川凍土;2002年06期

6 崔廣心,李毅;有壓條件下濕砂結(jié)冰溫度的研究[J];冰川凍土;1994年04期

7 劉招君;董清水;葉松青;朱建偉;郭巍;李殿超;柳蓉;張海龍;杜江峰;;中國(guó)油頁(yè)巖資源現(xiàn)狀[J];吉林大學(xué)學(xué)報(bào)(地球科學(xué)版);2006年06期

8 牛繼輝;陳殿義;;國(guó)外油頁(yè)巖的地下轉(zhuǎn)化開(kāi)采方法[J];吉林大學(xué)學(xué)報(bào)(地球科學(xué)版);2006年06期

9 李方政,夏明萍;基于指數(shù)積分函數(shù)的人工凍土溫度場(chǎng)解析研究[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年04期

10 張世銀;姚兆明;;人工凍土凍結(jié)溫度影響因素靈敏度分析[J];低溫建筑技術(shù);2007年04期



本文編號(hào):2079602

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/kuangye/2079602.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶40eb2***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com