西藏榮那河中榮那礦體天然污水的地球化學演化與生態(tài)響應
本文選題:西藏 + 榮那銅礦 ; 參考:《中國地質大學(北京)》2017年碩士論文
【摘要】:西藏是我國未來重要的銅礦資源接替基地,其礦床主要分布于內流水域,目前尚缺乏相應地區(qū)的礦山污染規(guī)律與風險的研究。榮那礦床是西藏多龍礦集區(qū)的一個超大型斑巖銅礦體。本文在前人工作的基礎上,測定了水體、沉積物、階地土壤以及植被重金屬含量,對重金屬含量變化及污染程度進行了初步分析;通過原位實驗測定了若干重金屬在河水與沉積物之間的動態(tài)平衡;同時對礦床開發(fā)潛在污染風險進行了評價。獲得如下結論:(1)礦體污水的注入導致河水理化因子、河水與沉積物重金屬含量發(fā)生劇變。河水的pH與ORP先下降,然后隨污水匯入距離增加緩慢上升,SO_4~(2-)含量先上升后下降。污水中Cu、Zn、Fe、Mn、Co、Ni含量分別為上游河水的1137、118、1591、119、104、17倍,Cu、Zn、Mn超過銅鎳鈷工業(yè)污染排放標準4.54、1.52、1.61倍。地積累指數表明污染河段沉積物中Cu為極嚴重污染,并對河水造成潛在二次污染隱患。一級階地中Cu為強度污染。(2)正常情況下榮那河地表流程僅30km,然后滲漏進入地下;僅在洪水期,河流流程延長至55km注入到別錯。別錯沉積物重金屬含量與榮那河存在顯著差異,而與西藏地區(qū)其它18個大型湖泊無差異,其沉積物受到污水影響很小。(3)未受污水影響的波龍河、和榮那河上游河水重金屬含量甚微,符合源頭水標準;說明巖體的正常風化不會對地表水和沉積物造成污染。(4)榮那河生態(tài)系統(tǒng)受損嚴重。整個污染河段浮游動物和底棲動物消失;浮游植物趨于繁盛,平均密度比受損前高出20倍。在污染段共檢出藍藻門5種,硅藻門23種,綠藻門2種。色球藻(Chroococcus sp.)是污染河段代表性物種。相關性分析表明,生物密度與pH表現為正相關關系,與重金屬含量為負相關關系。(5)重金屬離子原位實驗表明,Mn在沉積物與河水之間的平衡濃度為484μg/g(R5站位)。其它實驗元素動態(tài)平衡點接近于實驗濃度下限,無法取得可信結果,建議開展進一步工作。
[Abstract]:Tibet is an important copper mine resource replacement base in the future in China. Its deposits are mainly distributed in the inland waters. At present, there is a lack of research on mine pollution law and risk in the corresponding areas. The Rongna deposit is a very large porphyry copper deposit in the Dulong ore concentration area, Tibet. Based on the previous work, the contents of heavy metals in water body, sediment, terrace soil and vegetation were measured, and the change of heavy metal content and the degree of pollution were analyzed. The dynamic equilibrium of some heavy metals between river water and sediment was determined by in-situ experiments, and the potential pollution risk of ore deposit development was evaluated. The main conclusions are as follows: (1) the injection of ore body sewage resulted in great changes in the physical and chemical factors of river water and heavy metal contents in river and sediment. The pH and ORP of the river water first decreased and then increased slowly with the increase of the sewage inflow distance. The content of SO42- increased first and then decreased. The content of Cu ~ (2 +) Zn ~ (2 +) Fe ~ (2 +) mn ~ (2 +) ~ (2 +) in waste water is 1137 ~ 1187 ~ 1 1591U ~ (1 19) ~ (10 ~ 4) ~ (17) times that of the upstream river water. The Cu ~ (2 +) Zn ~ (2 +) mn is 1.61 times higher than the discharge standard of copper, nickel and cobalt industrial pollution. The accumulation index indicates that Cu in the polluted river sediment is a serious pollution and causes potential secondary pollution hidden danger to the river water. (2) under normal conditions, the surface flow of the Rongna River is only 30km, and then leaks into the ground, and only during the flood period, the river flow extends to 55km injection to the fault. There were significant differences between the heavy metal contents in the sediments and the Jona River, but there was no difference with the other 18 large lakes in Tibet. The sediments of the sediments were very little affected by sewage. (3) the Bolong River, which was not affected by the sewage, The content of heavy metals in the upper reaches of the river is very low, which conforms to the standard of source water, which indicates that the normal weathering of rock mass will not cause pollution to surface water and sediment. (4) the ecosystem of Rongna River is seriously damaged. Zooplankton and zoobenthos disappeared in the whole polluted reach, and phytoplankton tended to flourish, the average density of phytoplankton was 20 times higher than that before damage. A total of 5 species of cyanobacteria, 23 species of diatom and 2 species of Chlorophyta were detected in the polluted section. Chroococcus sp. It is a representative species of polluted river. Correlation analysis showed that the biological density was positively correlated with pH and negatively correlated with heavy metal content. (5) in situ experiments of heavy metal ions showed that the equilibrium concentration of mn between sediment and river was 484 渭 g / g (R5 station). The dynamic equilibrium point of other experimental elements is close to the lower limit of experimental concentration and can not obtain credible results. It is suggested that further work be carried out.
【學位授予單位】:中國地質大學(北京)
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X753
【參考文獻】
相關期刊論文 前10條
1 唐浩;曹乃文;;淺談我國土壤重金屬污染現狀及修復技術[J];安徽農學通報;2017年07期
2 馬原;;水污染指數法在河流水質評價中的應用[J];水利技術監(jiān)督;2017年01期
3 黃錦勇;覃銘;馬文英;俞娟;彭祥捷;楊林;;受酸性礦山廢水影響河流懸浮物中重金屬污染特征分析與生態(tài)風險評價[J];環(huán)境化學;2016年11期
4 朱玉珍;何天容;高釗;郭艷娜;;貴州草海沉積物重金屬分布及其對底棲動物群落的影響[J];中國環(huán)境科學;2016年06期
5 韓煜;全占軍;王琦;史娜娜;;金屬礦山廢棄地生態(tài)修復技術研究[J];環(huán)境保護科學;2016年02期
6 郭泌汐;劉勇勤;張凡;侯居峙;張宏波;;西藏湖泊沉積物重金屬元素特征及生態(tài)風險評估[J];環(huán)境科學;2016年02期
7 常玉虎;趙元藝;曹沖;單云;曹強;;德興銅礦區(qū)主要流域內環(huán)境介質中重金屬含量特征與健康風險評價[J];地質學報;2015年05期
8 陳紅旗;曲曉明;范淑芳;;西藏改則縣多龍礦集區(qū)斑巖型銅金礦床的地質特征與成礦-找礦模型[J];礦床地質;2015年02期
9 王斐;黃益宗;王小玲;高柱;余發(fā)新;徐峰;保瓊莉;胡瑩;喬敏;金姝蘭;李季;向猛;;江西鎢礦周邊土壤重金屬生態(tài)風險評價:不同評價方法的比較[J];環(huán)境化學;2015年02期
10 劉勇;吳堅扎西;梅朵;黃道君;旦增;布多;;拉薩河流域地熱水中重金屬分布及其污染風險評估[J];安徽農業(yè)科學;2015年07期
相關會議論文 前1條
1 羅玉虎;賈沁賢;劉喜方;;西藏達則錯鹽湖表層沉積物物理特征與重金屬沉積特征[A];2016中國環(huán)境科學學會學術年會論文集(第四卷)[C];2016年
相關博士學位論文 前7條
1 Mathews Tananga Nyirenda;湖南錫礦山銻礦酸性礦山廢水產生的地球化學過程及銻污染研究[D];中國地質大學;2016年
2 孫振明;西藏班—怒成礦帶西段多龍礦集區(qū)銅金成礦作用與成礦規(guī)律[D];吉林大學;2015年
3 婁玉霞;苔蘚植物對重金屬污染的響應機理和生物指示的研究[D];上海師范大學;2013年
4 張涪平;藏中拉屋銅礦區(qū)生態(tài)恢復研究[D];華中農業(yè)大學;2012年
5 付善明;廣東大寶山金屬硫化物礦床開發(fā)的環(huán)境地球化學效應[D];中山大學;2007年
6 張國平;貴州典型礦山的水環(huán)境地球化學特征[D];中國科學院研究生院(地球化學研究所);2005年
7 廖國禮;典型有色金屬礦山重金屬遷移規(guī)律與污染評價研究[D];中南大學;2005年
相關碩士學位論文 前5條
1 杜明勇;重金屬對太湖流域主要浮游藻類生長及群落結構的影響[D];南京農業(yè)大學;2014年
2 李丹;西藏波龍銅礦床流體包裹體研究[D];成都理工大學;2012年
3 周桂平;崇明東灘沉積物中還原無機硫(RIS)的形態(tài)特征及其轉化機制研究[D];復旦大學;2011年
4 趙巖;西藏甲瑪銅多金屬礦床開發(fā)過程中潛在的礦山地質環(huán)境問題及對策[D];成都理工大學;2011年
5 曾凡萍;饒河樂安江段及入鄱陽湖口處沉積物中重金屬的空間變化和污染特征[D];南昌大學;2007年
,本文編號:2073945
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2073945.html