基于圖像處理的皮帶煤量動態(tài)計量技術(shù)及在皮帶調(diào)速系統(tǒng)中的應用研究
本文選題:皮帶調(diào)速 + 圖像處理; 參考:《山東科技大學》2017年碩士論文
【摘要】:我國是世界煤炭生產(chǎn)大國,煤炭的皮帶輸送是煤炭開采中一個重要環(huán)節(jié),皮帶輸送機的功耗占整個礦井容量的30%,依據(jù)皮帶上的煤量對皮帶輸送機進行實時變頻調(diào)速來實現(xiàn)煤礦節(jié)能降耗生產(chǎn),成為一種發(fā)展趨勢。針對目前采用皮帶秤實現(xiàn)皮帶上煤量動態(tài)計量的方式存在造價高、安裝維護工作量大等問題,本文設(shè)計了一種基于圖像處理的皮帶煤量動態(tài)計量方法:對上傳到地面上的礦井皮帶監(jiān)控視頻流進行實時圖像處理,計算出煤寬比,依據(jù)皮帶上煤量估算公式估算出煤量。該方法在無須增加硬件成本,且其計量精度能夠滿足變頻調(diào)速要求。本文以現(xiàn)場的實際圖像數(shù)據(jù)為研究對象,按照圖像處理流程進行分析。在圖像預處理階段,針對圖像反光的問題提出了一種基于窗口閾值的自適應濾波方法,有效去除噪聲的同時保留了邊界信息。在圖像分割提取階段,使用模板匹配法,選取反光程度不同的兩個模板,利用EMD算法,把圖像分為反光嚴重圖像和反光微弱或無反光圖像兩類,每一類根據(jù)其特點采用不同的處理方法。針對邊界對比度低和現(xiàn)場光源不穩(wěn)定的問題,改進了自適應閾值分割算法,提高了分割效果,并采用先腐蝕后膨脹的方法對圖像進行處理,提高了邊界識別精度。最后,利用OpenCV圖像處理庫建立了基于圖像處理的調(diào)速系統(tǒng)。該系統(tǒng)在興隆莊煤礦進行現(xiàn)場測試,結(jié)果表明,系統(tǒng)的穩(wěn)定性、計量精度和實時性均達到了實用的要求,為下一步通過生產(chǎn)應用為煤礦的節(jié)能降耗打下了堅實的基礎(chǔ),具有一定的推廣實用價值。
[Abstract]:China is a big coal producer in the world, and the belt conveyance of coal is an important link in coal mining. The power consumption of belt conveyer accounts for 30 percent of the capacity of the whole mine. According to the coal quantity on the belt, it has become a development trend to realize the energy saving and consumption reduction production of coal mine by using the real-time frequency conversion speed regulation to realize the coal belt conveyer. In view of the problems of high cost and heavy workload of installation and maintenance in the way of dynamic measurement of coal quantity on belt by using belt weigher at present, In this paper, a dynamic measurement method of belt coal quantity based on image processing is designed. The real-time image processing of mine belt monitoring video stream is carried out, the ratio of coal to width is calculated, and the coal quantity is estimated according to the estimation formula of coal quantity on belt. This method does not need to increase the cost of hardware, and its measuring accuracy can meet the requirements of frequency conversion speed regulation. In this paper, the actual field image data as the research object, according to the image processing process. In the stage of image preprocessing, an adaptive filtering method based on window threshold is proposed to solve the problem of image reflection, which effectively removes noise and preserves boundary information. In the stage of image segmentation and extraction, the template matching method is used to select two templates with different reflective degree, and the EMD algorithm is used to divide the image into two categories: serious reflective image and weak or non-reflective image. Each class adopts different processing methods according to its characteristics. Aiming at the problems of low boundary contrast and unstable field light source, the adaptive threshold segmentation algorithm is improved, and the segmentation effect is improved. The image is processed by first corrosion and then expansion, and the accuracy of boundary recognition is improved. Finally, a speed control system based on image processing is established by using OpenCV image processing library. The system has been tested in Xinglongzhuang coal mine. The results show that the stability, measurement precision and real time of the system have reached the practical requirements, which lays a solid foundation for the energy saving and consumption reduction of the coal mine through the application of production. It has certain popularization and practical value.
【學位授予單位】:山東科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD634.1;TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 陳廣立;;超聲波煤流傳感器在膠帶變頻調(diào)速系統(tǒng)中的應用[J];陜西煤炭;2016年06期
2 王月新;劉明君;;sobel算子與prewitt算子分析與研究[J];計算機與數(shù)字工程;2016年10期
3 岳楨干;;美國噴氣推進實驗室開發(fā)出一種可大幅提高Landsat圖像質(zhì)量的方法[J];紅外;2016年06期
4 高晶;蔡幸福;劉志強;常燕;;基于區(qū)域生長的目標檢測方法[J];北京工業(yè)大學學報;2016年06期
5 席小霞;宋文愛;;一種新型的中值濾波改進算法[J];電子世界;2016年04期
6 劉子君;張杰斌;周欣欣;高強;;基于顏色特征的自然保護區(qū)圖像篩選系統(tǒng)[J];計算機與現(xiàn)代化;2016年02期
7 王向前;;煤礦運輸機中的變頻調(diào)速技術(shù)[J];煤炭科技;2015年04期
8 張成斌;王開福;;脈沖噪聲圖像的中-均值濾波算法[J];激光與紅外;2015年07期
9 宋海友;張巧珍;;多線程技術(shù)在數(shù)據(jù)通信中的應用[J];電子技術(shù)與軟件工程;2015年05期
10 常春;劉鵬飛;幸奠軍;;負載智能跟蹤監(jiān)控技術(shù)在皮帶運輸系統(tǒng)中的設(shè)計與應用[J];煤礦現(xiàn)代化;2013年03期
相關(guān)會議論文 前1條
1 田瑞云;;神東公司安全綠色高產(chǎn)高效開采煤炭資源綜述[A];煤礦綠色高效開采技術(shù)研究——陜西省煤炭學會學術(shù)年會論文集(2016)[C];2016年
相關(guān)碩士學位論文 前5條
1 吳曉陽;基于OpenCV的運動目標檢測與跟蹤[D];浙江大學;2008年
2 郭華;自適應濾波算法及應用研究[D];西北師范大學;2007年
3 張立功;基于ARM7的現(xiàn)場總線型皮帶秤儀表設(shè)計[D];太原理工大學;2006年
4 李毅;自適應濾波及濾波算法研究[D];西北工業(yè)大學;2003年
5 徐信榮;新型電子皮帶秤的研究[D];西北工業(yè)大學;2002年
,本文編號:2073868
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2073868.html