基于電破碎效應(yīng)的脈沖致裂煤體增滲實(shí)驗(yàn)研究
本文選題:電破碎效應(yīng) + 煤體。 參考:《中國礦業(yè)大學(xué)》2017年博士論文
【摘要】:我國煤層氣資源儲(chǔ)量豐富,但由于煤層滲透率低,使大部分煤礦瓦斯抽采效率受到了嚴(yán)重制約。采取適當(dāng)?shù)募夹g(shù)手段、人為地增加煤層透氣性是提高瓦斯抽采效率的重要途徑。為此,本文針對(duì)基于電破碎效應(yīng)的脈沖致裂煤體增滲方法開展了實(shí)驗(yàn)研究,以期為煤層氣高效開發(fā)探索一條新的途徑。搭建了煤巖電脈沖致裂增滲實(shí)驗(yàn)系統(tǒng),以焦作無煙煤、淮北無煙煤、陜西煙煤、甘肅煙煤和內(nèi)蒙古煙煤等5種煤樣為研究對(duì)象,在空氣環(huán)境下對(duì)5種煤樣進(jìn)行了電脈沖擊穿致裂增滲實(shí)驗(yàn)。并以淮北無煙煤和甘肅煙煤為例研究了煤樣尺寸、含水率和擊穿電壓等因素對(duì)電脈沖致裂煤體的影響。利用掃描電鏡、紅外光譜分析、壓汞法和低溫液氮吸附法分析了電脈沖技術(shù)對(duì)煤體微觀結(jié)構(gòu)的影響。同時(shí),搭建了滲流實(shí)驗(yàn)系統(tǒng),以淮北無煙煤為例定量研究了受圍壓約束的煤體在電脈沖擊穿致裂后滲透率的改善效果。在實(shí)驗(yàn)研究的基礎(chǔ)上,探討了高壓電脈沖致裂煤體的增滲機(jī)理。最后提出了電脈沖技術(shù)在低透氣性煤層增透方面的潛在應(yīng)用方法。主要研究成果如下:(1)明確了煤樣在空氣環(huán)境下電脈沖擊穿的基本形式。研究表明:在空氣環(huán)境下,煤樣的電脈沖擊穿有內(nèi)部擊穿和沿面擊穿2種形式。內(nèi)部擊穿是電脈沖擊穿過程中的等離子體通道從煤樣內(nèi)部通過,巨大的能量在瞬間注入等離子體通道內(nèi),形成的高溫?zé)崤蛎浟蜎_擊波使煤樣發(fā)生破碎,煤樣表面均呈現(xiàn)出燒灼狀態(tài),原生結(jié)構(gòu)被破壞,形成了很多孔隙和裂隙。沿面擊穿是等離子體通道沿著煤樣表面發(fā)展,最終與兩個(gè)電極連通,發(fā)生沿面擊穿時(shí)等離子體通道中的能量大部分耗散于空氣中,導(dǎo)致煤樣沒有發(fā)生明顯的破壞。(2)發(fā)現(xiàn)了煤體內(nèi)部擊穿電壓和擊穿場強(qiáng)的變化規(guī)律。研究發(fā)現(xiàn):在煤樣長度不變的情況下,煤體發(fā)生內(nèi)部擊穿的概率隨著煤樣直徑的增加呈現(xiàn)出上升趨勢,但是煤樣直徑的變化對(duì)發(fā)生內(nèi)部擊穿時(shí)的擊穿電壓影響不明顯;煤樣的內(nèi)部擊穿電壓隨著含水率的增加呈下降趨勢,隨著煤樣長度的增加而呈上升趨勢;煤樣的內(nèi)部擊穿場強(qiáng)與煤樣的長度呈負(fù)指數(shù)關(guān)系,即:E(28)aeb L(10)c,式中,E為煤體的擊穿場強(qiáng),L為煤體長度,a,b(b(27)0)和c為常數(shù)。(3)揭示了煤樣擊穿后的孔隙結(jié)構(gòu)演化特征。研究表明:隨著擊穿電壓的增加,煤體表面的裂隙數(shù)量明顯增加;電脈沖擊穿后的煤體內(nèi)部開放性的透氣性孔有了一定程度的增加,煤體的微觀孔隙結(jié)構(gòu)有了較好的改善,但是微觀孔隙結(jié)構(gòu)的改善效果并不是擊穿電壓越大越好,隨著擊穿電壓的上升,累積孔容呈現(xiàn)出先增加后減小的趨勢,這意味著擊穿電壓存在一個(gè)最優(yōu)值,當(dāng)采用最佳的擊穿電壓時(shí),可以使煤體內(nèi)的孔容增加量達(dá)到最大值。(4)初步揭示了電脈沖擊穿煤體的致裂增透機(jī)理。研究發(fā)現(xiàn):在恒定的圍壓和不同的瓦斯壓力下,被電脈沖擊穿的煤樣的滲透率比原煤的滲透率都有明顯的增加,達(dá)到了原煤滲透率的1.4-2.2倍;在恒定的瓦斯壓力和不同的圍壓下,電脈沖擊穿煤體的滲透率也明顯高于原煤的滲透率;基于固體電介質(zhì)擊穿理論、煤巖爆破損傷理論和煤層瓦斯?jié)B流理論,探討了電脈沖擊穿煤體的致裂增滲機(jī)理,電脈沖擊穿煤體的過程中,等離子體通道內(nèi)形成的應(yīng)力波作用于煤體,使煤體中形成了大量的連通裂隙,有效的提高了煤體的滲透率。(5)提出了電脈沖技術(shù)在煤層增透方面應(yīng)用的三種技術(shù)設(shè)想:煤礦井下電脈沖擊穿致裂煤體增滲技術(shù)、地面煤層氣井電脈沖擊穿煤體致裂增滲方法和地面煤層氣井電脈沖解堵增滲方法。研究成果有助于完善高壓電脈沖技術(shù)致裂煤體的增滲機(jī)理,為高壓電脈沖技術(shù)在改善煤層滲透率的現(xiàn)場應(yīng)用中提供理論支撐。課題研究期間發(fā)表論文8篇,其中SCI檢索4篇,EI檢索2篇,授權(quán)國家發(fā)明專利12項(xiàng)。
[Abstract]:China's coal seam gas reserves are abundant, but because of low coal seam permeability, most coal mine gas extraction efficiency has been severely restricted. Taking appropriate technical means to artificially increase the permeability of coal seam is an important way to improve gas extraction efficiency. An experimental study is carried out to explore a new way for the efficient development of coal bed gas. An experimental system of coal and rock electrical pulse fracturing is set up. 5 kinds of coal samples, such as Jiaozuo anthracite, Huaibei anthracite, Shaanxi bituminous coal, Gansu bituminous coal and Inner Mongolia bituminous coal, are used as the research objects, and 5 kinds of coal samples are subjected to electric pulse impact penetration enhancement under the air environment. Taking Huaibei anthracite and Gansu bituminous coal as an example, the influence of coal sample size, water content and breakdown voltage on electric pulse cracking coal body was studied. The influence of electric pulse technology on coal microstructure was analyzed by scanning electron microscope, infrared spectrum analysis, mercury injection method and low temperature liquid nitrogen adsorption method. At the same time, the seepage experiment system was built. In the case of Huaibei anthracite as an example, the effect of permeability improvement on the coal body subjected to the impact of the electric pulse is quantitatively studied. On the basis of the experimental study, the infiltration mechanism of the high pressure electric pulse cracking coal body is discussed. Finally, the potential application method of the electric pulse technology in the low permeability coal seam is put forward. The following are as follows: (1) the basic form of electric pulse impacting on coal samples in air environment is clarified. The study shows that in the air environment, the electric pulse of coal samples has 2 forms of internal breakdown and surface breakdown. The internal breakdown is the passage of the plasma channel from the inner part of the coal sample, and the huge energy is injected into the plasma in a moment. The high temperature thermal expansion force and shock wave formed in the road caused the coal sample to break up, the surface of the coal samples showed a burning state, the primary structure was destroyed and a lot of pores and cracks were formed. The surface breakdown along the surface is the plasma channel along the surface of the coal, and finally connected with the two electrodes, and the energy in the plasma channel is big when the surface is broken down. Partially dissipated in the air, the coal sample has not been destroyed obviously. (2) the change law of the breakdown voltage and the breakdown field strength of the coal body was found. The study found that the probability of internal breakdown of coal body appears to rise with the increase of coal sample diameter when the coal sample length is constant, but the change of coal sample diameter is occurring The internal breakdown voltage of internal breakdown is not obvious; the internal breakdown voltage of coal sample decreases with the increase of water content, and increases with the increase of coal sample length; the internal breakdown strength of coal samples is negatively exponential with the length of coal samples, that is, E (28) AEB L (10) C, E is the breakdown field strength of coal body, L is the length of coal, a, B (b). 27) 0) and C as a constant. (3) the pore structure evolution characteristics of coal sample after breakdown are revealed. The study shows that with the increase of breakdown voltage, the number of cracks on the surface of coal increases obviously; the opening of the coal body inside the coal body after the pulse is increased to a certain extent, and the micro pore structure of the coal body has been better improved, but the micro pore structure is slightly improved. The improvement effect of the pore structure is not the greater the breakdown voltage, the better the higher the breakdown voltage. With the rise of the breakdown voltage, the cumulative Kong Rong appears to increase first and then decrease, which means that the breakdown voltage has an optimal value. When the best breakdown voltage is used, the increase of the pore volume in the coal can reach the maximum. (4) the electric pulse is preliminarily revealed. It is found that under constant confining pressure and different gas pressure, the permeability of coal samples impacted by electric pulse increases significantly than the original coal permeability, reaching 1.4-2.2 times of the original coal permeability, and the permeability of the coal body under constant gas pressure and different confining pressure. It is obviously higher than the permeability of the raw coal; based on the theory of solid dielectric breakdown, the theory of coal rock blasting damage and the theory of coal seam gas seepage, the mechanism of the crack growth of the coal body is discussed. In the process of the electric pulse impacting the coal body, the stress wave formed in the plasma channel is used in the coal body, making a large number of connection cracks in the coal body. The porosity can effectively improve the permeability of coal. (5) three kinds of technical ideas for the application of electric pulse technology to coal seams are put forward: coal mine underground electric pulse impact penetrating coal infiltration technology, ground seam gas well electric pulse impacting coal body cracking increase method and surface coalbed gas well electric pulse plugging removal method. The osmotic mechanism of the cracked coal by the high pressure electric pulse technology provides the theoretical support for the field application of the high pressure electric pulse technology in improving the permeability of the coal seam. During the study period, 8 papers were published, of which 4 articles were retrieved by SCI, 2 articles were retrieved by EI, and 12 patents were authorized by the state.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD712.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周強(qiáng),胡為民,楊振平;低擊穿電壓鋁制品生產(chǎn)工藝初探[J];湖北化工;1997年03期
2 何曉瑛;;變壓器油擊穿電壓測試結(jié)果影響因素初探[J];石油商技;2010年06期
3 黃瀛華 ,陳丕亞 ,陳義恭;煤及煤焦孔隙結(jié)構(gòu)的研究[J];華東化工學(xué)院學(xué)報(bào);1984年02期
4 程秀秀,黃瀛華,任德慶;煤焦的孔隙結(jié)構(gòu)及其與氣化的關(guān)系[J];燃料化學(xué)學(xué)報(bào);1987年03期
5 CepzeebB.П;邵素華;;碳纖維材料活化過程中孔隙結(jié)構(gòu)的發(fā)展[J];新型碳材料;1991年01期
6 張占濤,王黎,張睿,張麗;煤的孔隙結(jié)構(gòu)與反應(yīng)性關(guān)系的研究進(jìn)展[J];煤炭轉(zhuǎn)化;2005年04期
7 承秋泉;王強(qiáng);陳宏宇;陳偉鈞;;一種新型的孔隙結(jié)構(gòu)儀[J];石油儀器;2006年04期
8 殷艷玲;;孔隙結(jié)構(gòu)分形維數(shù)測試與應(yīng)用研究進(jìn)展[J];內(nèi)蒙古石油化工;2008年09期
9 隆清明;趙旭生;孫東玲;鄒銀輝;;吸附作用對(duì)煤的滲透率影響規(guī)律實(shí)驗(yàn)研究[J];煤炭學(xué)報(bào);2008年09期
10 李傳亮;;地面滲透率與地下滲透率的關(guān)系[J];新疆石油地質(zhì);2008年05期
相關(guān)會(huì)議論文 前8條
1 王桂蓮;李德建;何滿潮;楊國興;臺(tái)啟民;;巖石吸水特性及其孔隙結(jié)構(gòu)變化研究[A];中國軟巖工程與深部災(zāi)害控制研究進(jìn)展——第四屆深部巖體力學(xué)與工程災(zāi)害控制學(xué)術(shù)研討會(huì)暨中國礦業(yè)大學(xué)(北京)百年校慶學(xué)術(shù)會(huì)議論文集[C];2009年
2 孫偉鋒;陳越政;錢欽松;;高壓SOI-LIGBT特性研究[A];2010’全國半導(dǎo)體器件技術(shù)研討會(huì)論文集[C];2010年
3 王中言;方華;白武明;;砂巖孔隙結(jié)構(gòu)的圖象分析及其物理意義[A];1995年中國地球物理學(xué)會(huì)第十一屆學(xué)術(shù)年會(huì)論文集[C];1995年
4 李兆林;陳松;馮春林;;電容器介質(zhì)直流、交流擊穿電壓值的對(duì)比研究[A];2010輸變電年會(huì)論文集[C];2010年
5 陳紅宇;范明;陳偉鈞;;壓汞法、氣體吸附法聯(lián)合測定巖石的孔隙結(jié)構(gòu)[A];第十屆全國有機(jī)地球化學(xué)學(xué)術(shù)會(huì)議論文摘要匯編[C];2005年
6 張?jiān)?孟英峰;;非均質(zhì)多孔介質(zhì)孔隙結(jié)構(gòu)與聲波速度的關(guān)系[A];1998年中國地球物理學(xué)會(huì)第十四屆學(xué)術(shù)年會(huì)論文集[C];1998年
7 魏斌;;利用流動(dòng)單元計(jì)算高含水油田滲透率[A];2001年中國地球物理學(xué)會(huì)年刊——中國地球物理學(xué)會(huì)第十七屆年會(huì)論文集[C];2001年
8 吳撼宇;叢培天;蒯斌;王亮平;郭寧;;脈沖電壓下水介質(zhì)同軸傳輸線水開關(guān)擊穿電壓研究[A];四川省電子學(xué)會(huì)高能電子學(xué)專業(yè)委員會(huì)第四屆學(xué)術(shù)交流會(huì)論文集[C];2005年
相關(guān)博士學(xué)位論文 前10條
1 閆發(fā)志;基于電破碎效應(yīng)的脈沖致裂煤體增滲實(shí)驗(yàn)研究[D];中國礦業(yè)大學(xué);2017年
2 斯春松;準(zhǔn)噶爾盆地西北緣中二疊統(tǒng)一下三疊統(tǒng)扇三角洲砂礫巖儲(chǔ)層孔隙結(jié)構(gòu)表征及成因機(jī)制[D];中國地質(zhì)大學(xué);2014年
3 季淮君;可溶有機(jī)質(zhì)對(duì)煤層瓦斯儲(chǔ)運(yùn)特性影響機(jī)理研究[D];中國礦業(yè)大學(xué);2015年
4 張靜平;腐泥型有機(jī)質(zhì)孔隙結(jié)構(gòu)及吸附特征研究[D];中國地質(zhì)大學(xué)(北京);2012年
5 鄭江韜;低滲透巖石的應(yīng)力敏感性與孔隙結(jié)構(gòu)三維重構(gòu)研究[D];中國礦業(yè)大學(xué)(北京);2016年
6 李樂;含隨機(jī)裂紋網(wǎng)絡(luò)孔隙材料的滲透性研究[D];清華大學(xué);2015年
7 方寧;鋁用炭陽極孔隙結(jié)構(gòu)及成型裂紋形成機(jī)制研究[D];北京科技大學(xué);2016年
8 王晉;煤體注CO_2置換CH_4滲透率變化規(guī)律及對(duì)采收率影響研究[D];中國礦業(yè)大學(xué)(北京);2016年
9 郭慧;注CO_2后煤中礦物質(zhì)化學(xué)反應(yīng)對(duì)滲透率變化的影響研究[D];中國礦業(yè)大學(xué)(北京);2016年
10 陳亮;工作面前方煤體變形破壞和滲透率演化及其應(yīng)用研究[D];中國礦業(yè)大學(xué)(北京);2016年
相關(guān)碩士學(xué)位論文 前10條
1 周俊義;加載煤樣各向異性超聲響應(yīng)特征研究[D];河南理工大學(xué);2016年
2 孫佳楠;不同煤樣變壓解吸規(guī)律實(shí)驗(yàn)研究[D];河南理工大學(xué);2016年
3 周一峰;溫壓作用下煤體破壞裂隙演化規(guī)律的研究[D];西安科技大學(xué);2017年
4 丁智超;水分對(duì)阜康礦區(qū)低階煤瓦斯放散特性影響的實(shí)驗(yàn)研究[D];西安科技大學(xué);2017年
5 周市偉;構(gòu)造煤瓦斯解吸擴(kuò)散與吸附擴(kuò)散實(shí)驗(yàn)研究[D];河南理工大學(xué);2016年
6 任喜超;酸浸顆粒煤瓦斯解吸擴(kuò)散規(guī)律實(shí)驗(yàn)研究[D];河南理工大學(xué);2016年
7 宋文龍;自鉗位IGBT的分析與設(shè)計(jì)[D];電子科技大學(xué);2014年
8 胡瑞心;虛擬襯底應(yīng)變Si/SiGe HBT擊穿電壓及器件溫度敏感性改善技術(shù)研究[D];北京工業(yè)大學(xué);2015年
9 蔣明偉;4H-SiC浮動(dòng)結(jié)功率UMOSFET的模擬研究[D];西安電子科技大學(xué);2014年
10 李妍月;高壓SiC JBS二極管的設(shè)計(jì)優(yōu)化與實(shí)驗(yàn)研究[D];電子科技大學(xué);2016年
,本文編號(hào):1931227
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1931227.html