尾礦庫(kù)壩體變形穩(wěn)定性監(jiān)測(cè)技術(shù)研究
發(fā)布時(shí)間:2018-05-19 00:41
本文選題:尾礦庫(kù)在線監(jiān)測(cè) + 穩(wěn)定性。 參考:《山東理工大學(xué)》2015年碩士論文
【摘要】:尾礦壩是一座特殊的礦山工業(yè)構(gòu)筑物,一旦發(fā)生潰壩事故,將對(duì)企業(yè)經(jīng)濟(jì)、周邊居民的生命財(cái)產(chǎn)以及當(dāng)?shù)厣鷳B(tài)環(huán)境造成不可估量的后果。尾礦壩穩(wěn)定性不足容易導(dǎo)致潰壩,而尾礦壩發(fā)生潰壩、滑坡等事故前期的直觀表現(xiàn)是壩體變形。因此,研究尾礦壩的穩(wěn)定性以及對(duì)壩體變形趨勢(shì)進(jìn)行監(jiān)測(cè)預(yù)測(cè)是礦山安全生產(chǎn)中急需解決的首要課題。本文工作主要進(jìn)行了如下幾個(gè)方面的深入研究:(1)研究影響尾礦壩穩(wěn)定性的因素。介紹了尾礦壩組成、作用以及分類特點(diǎn)、安全等別劃分及尾礦壩的破壞模式,通過(guò)對(duì)尾礦物、外部環(huán)境、堆積壩以及浸潤(rùn)線等影響尾礦壩穩(wěn)定性因素進(jìn)行分析,揭示尾礦壩隨著壩體變高、庫(kù)水位上升,安全系數(shù)逐漸減小,穩(wěn)定性降低。(2)尾礦庫(kù)壩體變形是一個(gè)動(dòng)態(tài)變化的非線性系統(tǒng),不能用定性模型準(zhǔn)確分析和預(yù)測(cè),對(duì)此提出一種以自適應(yīng)變異和非線性慣性權(quán)重相結(jié)合的方法改進(jìn)粒子群算法,優(yōu)化支持向量機(jī)核參數(shù)和懲罰因子,建立基于粒子群-支持向量機(jī)的尾礦庫(kù)壩體變形預(yù)測(cè)模型。利用實(shí)際工程數(shù)據(jù)驗(yàn)證了該模型的可靠性,結(jié)果表明在短期內(nèi)該模型可以比較準(zhǔn)確預(yù)測(cè)壩體變形位移變化趨勢(shì),有利于及時(shí)了解尾礦壩的運(yùn)行狀況,從而減少尾礦庫(kù)風(fēng)險(xiǎn)。(3)研究尾礦庫(kù)在線安全監(jiān)測(cè)系統(tǒng),根據(jù)相關(guān)規(guī)范對(duì)某尾礦庫(kù)壩體變形進(jìn)行監(jiān)測(cè)設(shè)計(jì),闡述了該監(jiān)測(cè)系統(tǒng)的構(gòu)成,通信方式,儀器設(shè)備等,并對(duì)傳感器節(jié)點(diǎn)電路進(jìn)行設(shè)計(jì)。利用VB開(kāi)發(fā)尾礦庫(kù)監(jiān)測(cè)預(yù)警系統(tǒng)軟件,實(shí)現(xiàn)對(duì)監(jiān)測(cè)信息采集、傳輸、處理分析、圖表顯示和預(yù)警等功能,并采用混合編程的方法將建立的壩體位移預(yù)測(cè)模型應(yīng)用于監(jiān)測(cè)軟件系統(tǒng),為尾礦壩穩(wěn)定性分析提供有效信息支持,對(duì)保障尾礦庫(kù)安全有重要作用。
[Abstract]:Tailings dam is a special mine industrial structure. Once dam break occurs, it will cause inestimable consequences to enterprise economy, the life and property of the surrounding residents and the local ecological environment. The lack of stability of tailings dam can easily lead to dam break, while dam deformation is the visual manifestation of dam collapse and landslide in the early stage of accidents. Therefore, the study of the stability of tailings dam and the monitoring and prediction of dam deformation trend are the most urgent problems in mine safety production. The main work of this paper is to study the factors that affect the stability of tailings dam. This paper introduces the composition, function and classification characteristics of tailings dam, the classification of safety, and the failure mode of tailings dam. The factors affecting the stability of tailings dam, such as tailings mineral, external environment, accumulation dam and infiltration line, are analyzed. It is revealed that the tailing dam deformation is a dynamic nonlinear system with the dam body increasing, the reservoir water level rising, the safety factor gradually decreasing, and the stability decreasing. The deformation of the tailing dam body can not be accurately analyzed and predicted by the qualitative model. In this paper, an improved particle swarm optimization (PSO) algorithm based on adaptive mutation and nonlinear inertial weight is proposed to optimize kernel parameters and penalty factors of support vector machine (SVM), and a prediction model of tailing dam body deformation based on PSO and SVM is established. The reliability of the model is verified by using the actual engineering data. The results show that the model can accurately predict the deformation and displacement trend of the dam body in the short term and is helpful to understand the operation status of the tailings dam in time. In order to reduce the risk of tailing reservoir, the online safety monitoring system of tailing reservoir is studied, and the deformation monitoring design of a tailing dam body is carried out according to the relevant specifications. The composition, communication mode, instrument and equipment of the monitoring system are expounded. The sensor node circuit is designed. The software of monitoring and early warning system of tailing reservoir is developed by using VB to realize the functions of collecting, transmitting, processing and analyzing of monitoring information, displaying charts and warning, etc. The dam displacement prediction model is applied to the monitoring software system by using the mixed programming method, which provides effective information support for the stability analysis of the tailings dam and plays an important role in ensuring the safety of the tailings dam.
【學(xué)位授予單位】:山東理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TD926.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 景海河;葉欣;高彥東;;基于支持向量機(jī)的礦區(qū)開(kāi)采沉降的預(yù)測(cè)[J];黑龍江科技學(xué)院學(xué)報(bào);2008年04期
2 鄭欣;許開(kāi)立;魏勇;;尾礦壩潰壩致災(zāi)機(jī)理研究[J];中國(guó)安全生產(chǎn)科學(xué)技術(shù);2008年05期
,本文編號(hào):1907966
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1907966.html
最近更新
教材專著