三牙輪鉆頭復(fù)合滲硼層制備工藝及耐磨性研究
本文選題:碳化硼 + 硼鐵。 參考:《遼寧工程技術(shù)大學(xué)》2015年碩士論文
【摘要】:研究利用粉末包埋法,以B4C和硼鐵為供硼劑,黃血鹽為供氮?jiǎng)?Na_2S_2O_3和FeS為供硫劑,在20CrMo鋼氣體滲碳件上制備復(fù)合滲硼層。采用金相顯微鏡、X射線衍射儀對(duì)滲層組織及結(jié)構(gòu)進(jìn)行檢測(cè)分析,并對(duì)硬度、磨粒磨損和粘著磨損性能進(jìn)行了測(cè)試。XRD分析結(jié)果顯示:B-C復(fù)合滲層中有Fe_2B、FeB、Fe_3C相生成;B-C-N-S復(fù)合滲層中有Fe_2B、Fe_3N、FeS、Fe_3C相生成。硼鐵B-C及B-C-N-S復(fù)合滲層與碳化硼B(yǎng)-C及B-C。N-S復(fù)合滲層的顯微硬度最高分別為HV1 932.6、HV1 582.7和HV1 825.6、HV1445.9,滲層厚度分別為51μm、38μm和42μm、62μm,滲層與基體結(jié)合緊密。耐磨粒磨損性能測(cè)試:不同型號(hào)砂紙磨損下,硼鐵B-C及B-C-N-S與碳化硼B(yǎng)-C及B-C-N-S復(fù)合滲層的相對(duì)耐磨性較滲碳層分別提高4.01-5.21倍、1.20-1.33倍、2.44-3.25倍、1.46-1.78倍;不同附加載荷作用下,相對(duì)耐磨性較滲碳層分別提高1.89-4.01倍、1.09-1.29倍、1.54-2.47倍、1.29-1.46倍。耐粘著磨損性能測(cè)試:干摩擦條件下,對(duì)應(yīng)復(fù)合滲層的相對(duì)耐磨性較滲碳層提高1.38-1.59倍、2.91-3.34倍、1.16-1.46倍、3.92-4.54倍,摩擦系數(shù)較滲碳層由0.846分別降低到0.687、0.500、0.753、0.424;油摩擦條件下,對(duì)應(yīng)復(fù)合滲層的相對(duì)耐磨性較滲碳層分別提高1.38-1.91倍、2.93-4.03倍、1.21-1.41倍、5.48-6.45倍,摩擦系數(shù)較滲碳層由0.596分別降低到0.412、0.198、0.494、0.155。硼鐵滲劑B-C復(fù)合滲層的耐磨粒磨損性能最好,碳化硼滲劑B-C-N-S復(fù)合滲層的耐粘著磨損性能最好。在滲碳件表面制備B-C和B-C-N-S復(fù)合滲層能夠使?jié)B碳件的耐磨性提高,值得深入研究,使其能夠應(yīng)用到三牙輪鉆頭的實(shí)際生產(chǎn)中。
[Abstract]:The composite boronizing layer was prepared on 20CrMo steel gaseous Carburizing parts by powder embedding method with B _ 4C and ferric boron as boron donor and yellow blood salt as nitrogen supplying agent Na _ 2S _ 2O _ 3 and FeS as sulfur supplying agents. The microstructure and structure of the infiltrating layer were examined and analyzed by means of metallographic microscope and X-ray diffractometer, and the hardness of the layer was also analyzed. The wear and adhesion properties of abrasive particles were tested. XRD results showed that Fe2BX FeBf3 C composite infiltrating layer was formed by Fe2BN Fe3 C composite infiltrating layer and Fe2BZ Fe3N S composite infiltrating layer was formed by Fe2BX Fe3NNM FeS3 C composite infiltrating layer. The maximum microhardness of B-C and B-C-N-S composite boronizing layer and boron carbide B-C and B-C.N-S composite layer are HV1 932.6 and HV1 825.6 HV1445.9, respectively. The thickness of boronizing layer is 51 渭 m ~ 38 渭 m and 42 渭 m ~ (62) 渭 m, respectively. Wear resistance of boron iron B-C, B-C-N-S and boron carbide B-C and B-C-N-S were 4.01-5.21 times 1.20-1.33 times 2.44-3.25 times and 1.46-1.78 times higher than that of carburized layer under different kinds of sand paper wear respectively, the wear resistance of boron iron B-C, B-C-N-S and boron carbide B-C and B-C-N-S composite layer was 4.01-5.21 times higher than that of carburized layer, 2.44-3.25 times and 1.46-1.78 times higher than that of carburizing layer, respectively. The relative wear resistance is 1.89-4.01 times higher than that of carburized layer, 1.09-1.29 times and 1.54-2.47 times respectively 1.29-1.46 times. Wear resistance test: under dry friction conditions, the relative wear resistance of the corresponding composite carburized layer is 1.38-1.59 times higher than that of the carburized layer, 2.91-3.34 times 1.16-1.46 times and 3.92-4.54 times, the friction coefficient is reduced from 0.846 to 0.6870.5000.7530.424, respectively, under the oil friction condition, the wear resistance of the composite layer is increased by 1.38 to 1.59 times than that of the carburized layer, and the friction coefficient is decreased from 0.846 to 0.7530.424, respectively. The relative wear resistance of the corresponding composite layer is 1.38-1.91 times higher than that of the carburized layer, respectively 2.93-4.03 times 1.21-1.41 times 5.48-6.45 times, and the friction coefficient is reduced from 0.596 to 0.412 ~ 0.198 0.198 0.4944.155 respectively. The wear resistance of B-C composite boronizing layer is the best, and that of boronizing agent B-C-N-S composite layer is the best. The preparation of B-C and B-C-N-S composite carburizing layer on the surface of carburized parts can improve the wear resistance of carburized parts, which is worthy of further study, so that it can be applied to the practical production of three-cone bit.
【學(xué)位授予單位】:遼寧工程技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:P634.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 姚順;袁慶龍;;工藝參數(shù)及氧化鈰含量對(duì)40Cr鋼滲硼層的影響[J];熱加工工藝;2014年02期
2 廖磊;劉錦云;金應(yīng)榮;馮悅;孫輝;朱成敬;;碳鋼膏劑滲硼后的熱處理工藝及性能研究[J];西華大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
3 徐建軍;;20CrMo鋼高濃度滲碳研究[J];安徽電子信息職業(yè)技術(shù)學(xué)院學(xué)報(bào);2010年05期
4 劉沅東;王成彪;袁靜靜;劉家浚;;滲硫?qū)优cFeS粉末摩擦學(xué)機(jī)理的對(duì)比研究[J];摩擦學(xué)學(xué)報(bào);2010年03期
5 王慶芳;吳曉春;;低溫等離子滲硼層形成條件的探討[J];金屬熱處理;2009年01期
6 韓福彬;楊明合;翟應(yīng)虎;王文廣;蔣宏偉;;牙輪鉆頭損壞分析及應(yīng)對(duì)措施[J];天然氣工業(yè);2008年04期
7 王小龍;譚業(yè)發(fā);譚華;劉樹(shù)杰;尤峻;崇大平;;42CrMo合金鋼耐磨粒磨損性能研究[J];機(jī)械制造與自動(dòng)化;2008年01期
8 閆忠琳;葉宏;;碳氮共滲預(yù)處理對(duì)滲硼層組織性能的影響[J];熱加工工藝;2007年20期
9 張蜀紅;劉炳;;滲硼工藝研究與應(yīng)用現(xiàn)狀及發(fā)展[J];熱加工工藝;2007年12期
10 童永安;;三牙輪鉆頭的失效分析[J];鑿巖機(jī)械氣動(dòng)工具;2007年02期
,本文編號(hào):1900615
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1900615.html