厚黃土覆蓋區(qū)煤礦開采對不同水力條件松散含水層影響的數(shù)值模擬研究
本文選題:厚黃土地區(qū) + 煤礦開采; 參考:《太原理工大學》2017年碩士論文
【摘要】:我國煤炭資源豐富,煤炭作為主體能源,對經濟社會發(fā)展具有重要作用,同時煤礦開采也對地下水環(huán)境帶來的不可恢復的破壞。在我國西北地區(qū),煤礦往往存在于較厚的黃土層下,而厚黃土層中的松散含水層則是當?shù)鼐用竦闹饕盟?由于近年來煤礦的大量開采,導致煤礦上覆地層結構發(fā)生改變,形成冒落裂隙帶,使得煤層上覆含水層地下水沿此通道快速流失,或加大松散含水層地下水向下伏含水層的越流補給量,直接影響居民生活用水,間接破壞該地區(qū)地下水平衡。針對厚黃土地區(qū)煤礦開采對第四系松散含水層破壞的這一問題,本文以山西省長治市屯留縣境內常村煤礦為研究背景,在調查、收集、分析該地區(qū)地質、水文地質資料的基礎上,構建水文地質概念模型,數(shù)學模型,運用基于有限差分法的GMS地下水數(shù)值模型模擬的計算機軟件對模型進行模擬求解。通過改變松散含水層基礎水力條件,定量研究S6采區(qū)開采結束后,導水裂隙帶未溝通松散含水層、弱透水含水層性質不變條件下,采煤對不同水力特征的第四系松散含水層的影響。根據(jù)模擬結果,得到主要結論如下:(1)煤礦開采前,研究區(qū)內松散含水層地下水處于自然狀態(tài)下的動態(tài)平衡,當煤礦開采結束后,冒落裂隙帶形成,加大松散含水層地下水通過導水裂隙帶向下的越流補給量,以致采區(qū)范圍出現(xiàn)水位大幅度下降情況,產生降落漏斗,漏斗影響范圍及最大水位降深隨時間的增加而增大,并在預測前期變化較大,后期變化較小。(2)不同滲透系數(shù)情況下,保證冒落裂隙帶距弱透水層底板距離不變,弱透水層厚度及滲透系數(shù)等條件不變,以研究采煤對不同滲透系數(shù)松散含水層的影響。模擬結果顯示,不同滲透系數(shù)下,降落漏斗的影響面積、漏斗中心最大水位降深不同,預測前期滲透系數(shù)大者,降深大,影響面積大,預測后期,滲透系數(shù)大者降深小,影響面積大,最大影響面積為73.00km~2,最大降深為13.60m。(3)不同水頭情況下,保證冒落裂隙帶距弱透水層底板距離不變,弱透水層厚度及滲透系數(shù)等條件不變,以研究采煤對不同水頭松散含水層的影響,模擬結果顯示,不同水頭條件下,降落漏斗的影響面積、漏斗中心最大水位降深不同,整個預測期內,水頭大者,影響面積及最大水位降深大,最大影響面積達74.90km~2,最大水位降深達18.81m。
[Abstract]:China is rich in coal resources. Coal, as the main energy source, plays an important role in the development of economy and society. At the same time, coal mining also brings irreparable damage to the groundwater environment. In northwest China, coal mines often exist under the thick loess layer, and the loose aquifer in the thick loess layer is the main water source for the local residents. Because of the large amount of coal mining in recent years, the overlying stratum structure of the coal mine has been changed. The formation of caving fissure zone causes the rapid loss of groundwater in the overlying aquifer along this channel, or increases the overflowing recharge of the groundwater in the loose aquifer, which directly affects the domestic water consumption and indirectly destroys the groundwater balance in this area. In view of the problem that coal mining in thick loess area destroys the Quaternary loose aquifer, this paper takes Changcun Coal Mine in Tunliu County, Changzhi City, Shanxi Province as the research background, investigates, collects and analyzes the geology of this area. On the basis of hydrogeological data, a hydrogeological conceptual model and a mathematical model are constructed, and the model is simulated and solved by computer software of GMS groundwater numerical model based on finite difference method. By changing the hydraulic conditions of the foundation of the loose aquifer, the quantitative study is made on the condition that, after the exploitation of the S6 mining area, there is no communication between the loose aquifer and the weakly permeable aquifer in the fissure zone. The influence of coal mining on Quaternary loose aquifer with different hydraulic characteristics. According to the simulation results, the main conclusions are as follows: before the coal mining, the groundwater of the loose aquifer in the study area is in the dynamic equilibrium under the natural state, and when the coal mining is finished, the caving fissure zone is formed. Increasing the amount of overflowing recharge of the loose aquifer groundwater through the water diversion fissure zone, resulting in a large drop in the water level in the mining area, resulting in a drop funnel, the influence range of the funnel and the maximum depth of the water level drop increasing with the increase of time. In the case of different permeability coefficients, the distance between the caving fracture zone and the weak permeable layer bottom plate is not changed, the thickness of the weak permeable layer and the permeability coefficient are not changed. In order to study the influence of coal mining on the loose aquifer with different permeability coefficient. The simulation results show that the influence area of the drop funnel and the maximum water level in the center of the funnel are different under the different permeability coefficient, and the large permeability coefficient, the greater the depth, the larger the impact area, the lower the depth in the later stage of prediction, and the lower the depth in the later stage of prediction, the lower the maximum water level in the center of the funnel is. The influence area is large, the maximum influence area is 73.00kmm2, and the maximum depth is 13.60m.m3) under different water heads, the distance between the caving fissure zone and the weak permeable layer bottom plate is not changed, the thickness of the weak permeable layer and the permeability coefficient are not changed. In order to study the influence of coal mining on the loose aquifer with different water heads, the simulation results show that under different water head conditions, the influence area of the drop funnel, the maximum water level drop depth in the center of the funnel is different, and the water head is large in the whole prediction period. The influence area and the maximum water level drop depth are great, the maximum influence area is 74.90 km2, and the maximum water level drop depth is 18.81 m.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD82
【相似文獻】
相關期刊論文 前10條
1 段長營;開灤礦區(qū)含水層的命名及含水層名稱的統(tǒng)一[J];河北能源職業(yè)技術學院學報;2002年01期
2 毛印鴻;含水層厚度的確定[J];煤田地質與勘探;1984年02期
3 申寶宏;松散含水層水的治理途徑[J];煤礦開采;1995年02期
4 張利平;彭偉斌;;定量解釋含水層時誤差分析與探討[J];中國新技術新產品;2012年08期
5 馬嘉榮;喻懷君;;淮北臨渙礦區(qū)含水層降壓沉陷問題的探討[J];勘察科學技術;1990年05期
6 楊連云;;直流電法儀在礦井含水層探測中的應用[J];水利與建筑工程學報;2010年02期
7 馬秀芬;翟立娟;傅耀軍;唐燕波;李七明;苗建;穆金霞;李巖;;鄂爾多斯盆地煤炭基地含水層及其保護研究[J];中國煤炭地質;2012年08期
8 劉同吉,馬春陽,張勇;常村井田含水層重新劃分問題的探討[J];煤;2001年04期
9 劉興海;神東礦區(qū)含水層含水特征分析[J];中國煤炭;2005年11期
10 劉自儉;;馬家灘礦區(qū)馮記溝煤礦含水層分析[J];西北煤炭;2008年03期
相關會議論文 前1條
1 高淑琴;戴長雷;;高寒區(qū)傍河淺薄含水層集中取水工程分析及涌水量計算[A];寒區(qū)水資源研究[C];2008年
相關博士學位論文 前2條
1 陳立;長治盆地群采區(qū)含水層結構變異及水資源動態(tài)研究[D];中國地質大學(北京);2015年
2 孫淑琴;地面核磁共振探測地下水數(shù)值模擬與影響因素分析[D];吉林大學;2005年
相關碩士學位論文 前9條
1 甄戰(zhàn)戰(zhàn);大南湖侏羅系弱膠結含水層動態(tài)及介質特征研究[D];中國礦業(yè)大學;2015年
2 辛宇峰;厚黃土覆蓋區(qū)煤礦不同開采條件對松散含水層影響的數(shù)值模擬研究[D];太原理工大學;2016年
3 姚慶健;郭屯煤礦含水層參數(shù)計算及井筒沉降與偏斜機理分析[D];安徽理工大學;2017年
4 楊偉濤;砂礫含水層地下水源熱泵抽灌井間距的數(shù)值模擬研究[D];沈陽建筑大學;2013年
5 許偉;采煤影響下長治盆地含水層空間分區(qū)變化研究[D];石家莊經濟學院;2013年
6 馮俊亮;第四系巨厚含水層水文地質參數(shù)聯(lián)合推斷研究[D];內蒙古農業(yè)大學;2013年
7 樊燕;煤礦開采對上覆含水層影響的數(shù)值模擬研究[D];太原理工大學;2011年
8 袁建偉;水源熱泵地下含水層溫度場的研究[D];北京建筑工程學院;2009年
9 舒勤峰;天然河床反向滲濾取水水量計算方法研究[D];成都理工大學;2013年
,本文編號:1817329
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1817329.html