機(jī)載LiDAR礦區(qū)沉陷信息提取方法研究
本文選題:機(jī)載LiDAR + 差值DEM; 參考:《河南理工大學(xué)》2016年碩士論文
【摘要】:礦區(qū)沉陷監(jiān)測(cè)對(duì)于保障礦產(chǎn)資源安全開(kāi)采、保護(hù)礦區(qū)安全具有重要意義,已有的地面監(jiān)測(cè)方法勞動(dòng)強(qiáng)度大、效率低下、覆蓋范圍有限。機(jī)載LiDAR系統(tǒng)能夠快速獲取大面積地表高分辨率、高精度的三維點(diǎn)云數(shù)據(jù)。使用機(jī)載LiDAR技術(shù)對(duì)開(kāi)采塌陷引起的地表形變進(jìn)行監(jiān)測(cè),可以較快地獲得整個(gè)區(qū)域的空間地形變化信息,從而確定礦區(qū)的沉陷分布與地表移動(dòng)下沉情況。論文基于2009、2012年兩期機(jī)載LiDAR點(diǎn)云數(shù)據(jù),構(gòu)建了研究區(qū)沉陷信息提取的技術(shù)流程。在對(duì)兩期DEM差值信息不確定性分析的基礎(chǔ)上,去除了非開(kāi)采沉陷導(dǎo)致的地形變化信息,進(jìn)而提取到研究區(qū)沉陷盆地的空間分布與沉陷量估算值。論文主要研究?jī)?nèi)容可概括為以下三個(gè)方面:(1)分析了機(jī)載LiDAR點(diǎn)云數(shù)據(jù)的特點(diǎn),在采用漸進(jìn)三角網(wǎng)算法對(duì)機(jī)載LiDAR點(diǎn)云作濾波處理的基礎(chǔ)上,基于反距離加權(quán)插值法建立了兩期高分辨率DEM數(shù)據(jù);(2)針對(duì)機(jī)載LiDAR數(shù)據(jù)的特點(diǎn),在對(duì)DEM精度與不確定性分析的基礎(chǔ)上,利用模糊推理方法建立了基于坡度、點(diǎn)云密度和地表粗糙度的誤差相關(guān)表面,用于差值DEM不確定性的量化與DEM最小變化閾值的探測(cè),進(jìn)一步采用基于權(quán)重濾波窗口的貝葉斯估計(jì)判定與修正,較精確地獲取了研究區(qū)地表形變信息;(3)針對(duì)上述處理中存在地表侵蝕等導(dǎo)致的地形變化信息,論文在坡度相關(guān)性分析的基礎(chǔ)上,通過(guò)掩膜去除了非開(kāi)采沉陷導(dǎo)致的地形變化信息,并利用多項(xiàng)式擬合方法對(duì)剖面數(shù)據(jù)進(jìn)行處理,獲取了較為精確的沉陷盆地信息。通過(guò)實(shí)驗(yàn)研究我們發(fā)現(xiàn),該方法適用于大面積開(kāi)采沉陷監(jiān)測(cè),能夠快速確定沉陷區(qū)位置,較準(zhǔn)確獲取沉陷區(qū)的分布范圍、面積及體積等信息。但是,若地表植被覆蓋度增加,提取的DEM誤差將增大,高程差誤差也隨之增大;跈C(jī)載LiDAR數(shù)據(jù),我們能夠較準(zhǔn)確地提取沉陷區(qū)的位置、分布、沉陷深度以及沉陷量等信息,這為開(kāi)采沉陷損害評(píng)價(jià)及開(kāi)采沉陷預(yù)測(cè)提供了一種新的技術(shù)手段。
[Abstract]:Mining subsidence monitoring is of great significance for ensuring the safe mining of mineral resources and protecting the safety of mining areas. The existing surface monitoring methods are of great labor intensity, low efficiency and limited coverage.Airborne LiDAR system can quickly obtain large area surface high resolution, high accuracy 3D point cloud data.Using airborne LiDAR technology to monitor the ground deformation caused by mining collapse, the spatial topographic change information of the whole area can be obtained quickly, and the subsidence distribution and subsidence of the mining area can be determined.Based on the two issues of airborne LiDAR point cloud data in 2009 and 2012, the technical process of extracting subsidence information in the study area is constructed in this paper.Based on the uncertainty analysis of DEM difference information in two periods, the topographic variation information caused by non-mining subsidence is removed, and then the spatial distribution and subsidence estimation value of subsidence basin in the study area are extracted.In this paper, the main research contents can be summarized as follows: 1) the characteristics of airborne LiDAR point cloud data are analyzed. Based on the progressive triangular network algorithm, the airborne LiDAR point cloud is filtered.Based on the inverse distance weighted interpolation method, two periods of high resolution DEM data are established. According to the characteristics of airborne LiDAR data, based on the analysis of the accuracy and uncertainty of DEM, the slope based on fuzzy reasoning method is established.The error correlation surface of point cloud density and surface roughness is used for quantization of difference DEM uncertainty and detection of DEM minimum change threshold. Furthermore, Bayesian estimation and correction based on weight filtering window are used.In view of the topographic change information caused by the surface erosion in the above processing, the paper analyzes the correlation of slope degree.The terrain change information caused by non-mining subsidence is removed by mask, and the profile data are processed by polynomial fitting method, and more accurate information of subsidence basin is obtained.Through experimental study, we find that this method is suitable for monitoring subsidence in large area mining, and can quickly determine the location of subsidence area, and obtain the information of distribution, area and volume of subsidence area accurately.However, if the vegetation coverage is increased, the extracted DEM error will increase, and the elevation error will also increase.Based on airborne LiDAR data, we can accurately extract the location, distribution, depth and amount of subsidence, which provides a new technical means for mining subsidence damage evaluation and mining subsidence prediction.
【學(xué)位授予單位】:河南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TD327
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李曉久;景曉寧;;基于非接觸式測(cè)量的人體點(diǎn)云簡(jiǎn)化方法[J];紡織學(xué)報(bào);2012年07期
2 陳卓;宋麗梅;陳昌曼;唐歡;;同一物體不同視角的點(diǎn)云配準(zhǔn)方法[J];天津工業(yè)大學(xué)學(xué)報(bào);2014年01期
3 李宏;;基于三個(gè)基準(zhǔn)點(diǎn)的點(diǎn)云拼接對(duì)齊方法[J];工具技術(shù);2011年09期
4 李鵬飛;侯毅星;景軍鋒;;三維人體的點(diǎn)云獲取與點(diǎn)云重建[J];西安工程大學(xué)學(xué)報(bào);2014年01期
5 王磊,邢淵;反向工程中數(shù)據(jù)點(diǎn)云的拼合[J];模具技術(shù);2004年01期
6 周大偉;吳侃;唐瑞林;周建偉;;點(diǎn)云密度對(duì)地面三維激光掃描精度及沉陷參數(shù)的影響[J];金屬礦山;2011年09期
7 趙偉玲;謝雪冬;程俊廷;;保留邊界特征的點(diǎn)云簡(jiǎn)化算法[J];黑龍江科技學(xué)院學(xué)報(bào);2013年01期
8 陳凱;張達(dá);張?jiān)?;采空區(qū)三維激光掃描點(diǎn)云數(shù)據(jù)處理方法[J];光學(xué)學(xué)報(bào);2013年08期
9 萬(wàn)劍華;黃榮剛;周行;曾U,
本文編號(hào):1744155
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1744155.html