煤巖層水力致裂的應(yīng)力擾動效應(yīng)研究
本文選題:水力致裂 + 骨架應(yīng)力; 參考:《中國礦業(yè)大學(xué)》2017年碩士論文
【摘要】:煤巖體水力致裂技術(shù)已廣泛應(yīng)用于煤炭行業(yè),利用水力致裂技術(shù)防治煤與瓦斯突出以及沖擊礦壓等方面已取得初步成效。目前,水力致裂期間引起煤巖體應(yīng)力的變化規(guī)律還不清楚,對于利用水力致裂技術(shù)進行煤礦動力災(zāi)害防治而引起的應(yīng)力擾動是否會誘導(dǎo)突出和沖擊仍具有爭議。因此,研究煤巖體水力致裂期間及致裂之后的應(yīng)力擾動規(guī)律是一項非常迫切且必要的基礎(chǔ)性研究。本文采用物理模擬實驗、數(shù)值模擬、理論分析和現(xiàn)場分析等方法對煤巖體水力致裂期間及之后的應(yīng)力擾動規(guī)律進行研究。通過在試塊內(nèi)部埋設(shè)骨架應(yīng)力傳感器和孔隙水壓力傳感器,運用大尺寸真三軸水力致裂實驗系統(tǒng)進行了物理模擬實驗,實時監(jiān)控了水力致裂過程中水壓力的動態(tài)變化,監(jiān)測了試塊內(nèi)骨架應(yīng)力的動態(tài)變化,研究了水力致裂過程中裂縫周邊的應(yīng)力及其梯度變化規(guī)律,實驗結(jié)果表明:在三個主應(yīng)力方向上,排量越大,應(yīng)力擾動現(xiàn)象越明顯;距離致裂鉆孔越近,其應(yīng)力擾動現(xiàn)象越明顯;在垂直于主破裂面方向的應(yīng)力擾動最為明顯,其他方向的應(yīng)力擾動相對較小。運用RFPA2D-FLOW數(shù)值模擬軟件對水力致裂的應(yīng)力擾動規(guī)律進行研究,模擬結(jié)果表明:鉆孔開裂前,在鉆孔周圍形成壓應(yīng)力集中,并且隨著鉆孔水壓力的增大,垂直于最小主應(yīng)力方向上的應(yīng)力集中系數(shù)逐漸增大,最大主應(yīng)力方向上的應(yīng)力集中系數(shù)逐漸減小,并且應(yīng)力擾動的影響范圍逐漸增大;鉆孔開裂后,隨著水壓裂縫的張開及擴展,垂直于最小主應(yīng)力方向的應(yīng)力集中系數(shù)及應(yīng)力升高區(qū)的范圍逐漸增大,并且在水壓裂縫尖端形成明顯的拉應(yīng)力集中,使裂尖發(fā)生張拉破壞;距離鉆孔越遠(yuǎn),水壓力對主應(yīng)力的影響越小,同時應(yīng)力梯度的變化也越小。運用彈性力學(xué)、水力學(xué)、滲流力學(xué)及斷裂力學(xué)進行理論分析,分別從鉆孔未注水時、鉆孔注水未開裂時及鉆孔注水開裂后三個階段計算了鉆孔周邊和裂縫周邊應(yīng)力場。結(jié)合燕子山煤礦8403工作面水力致裂現(xiàn)場實測數(shù)據(jù),選取了2個致裂孔數(shù)據(jù)進行分析,結(jié)果表明:在致裂的過程中,在工作面聽見多次頂板破裂聲,說明由于水壓裂縫的產(chǎn)生及擴展使得工作面內(nèi)的應(yīng)力擾動較為明顯,在某個局部形成較大的應(yīng)力集中,使煤巖體處于塑性變形范圍內(nèi),當(dāng)應(yīng)力集中超過煤巖體的塑性極限時,應(yīng)變能釋放,進而煤巖體內(nèi)的應(yīng)力向深部轉(zhuǎn)移。
[Abstract]:Hydraulic fracturing technology of coal and rock mass has been widely used in coal industry. Preliminary results have been obtained in preventing coal and gas outburst and impacting rock pressure by hydraulic fracturing technology.At present, it is not clear how the stress of coal and rock mass changes during hydraulic fracturing, and whether the stress disturbance caused by hydraulic fracturing technology can induce outburst and impact is still controversial.Therefore, it is an urgent and necessary basic study to study the stress disturbance during and after hydraulic fracturing of coal and rock mass.In this paper, physical simulation, numerical simulation, theoretical analysis and field analysis are used to study the stress disturbance during and after hydraulic fracturing of coal and rock mass.By embedding skeleton stress sensor and pore water pressure sensor inside the specimen, the physical simulation experiment was carried out by using the large size true triaxial hydraulic fracturing experimental system, and the dynamic change of water pressure during hydraulic fracturing was monitored in real time.The dynamic change of skeleton stress in the specimen is monitored, and the stress and its gradient change around the crack during hydraulic fracture are studied. The experimental results show that the larger the displacement of the three principal stresses is, the more obvious the stress disturbance is.The closer the borehole is to the fracture, the more obvious the stress disturbance is, the more obvious the stress disturbance is in the direction perpendicular to the main fracture plane, the smaller the stress disturbance is in the other directions.The RFPA2D-FLOW numerical simulation software is used to study the stress disturbance law of hydraulic cracking. The simulation results show that the compressive stress concentration is formed around the borehole before the borehole cracks, and with the increase of the borehole water pressure,The stress concentration factor perpendicular to the direction of the minimum principal stress increases gradually, the stress concentration factor in the direction of the maximum principal stress decreases gradually, and the influence range of stress disturbance increases gradually.The stress concentration factor perpendicular to the direction of the minimum principal stress and the range of the stress increasing zone gradually increase with the opening and expansion of the hydraulic crack, and the tensile stress concentration forms at the tip of the hydraulic crack, which leads to the tensile failure of the crack tip.The farther away from the borehole, the smaller the influence of water pressure on principal stress and the smaller the change of stress gradient.Based on the theoretical analysis of elasticity, hydraulics, seepage mechanics and fracture mechanics, the stress fields around the borehole and around the fracture were calculated from the three stages of the borehole without water injection, the borehole water injection cracking and the drilling water injection cracking.Combined with the measured data of hydraulic cracking in 8403 working face of Yanzishan Coal Mine, the data of two cracked holes are selected for analysis. The results show that: in the process of cracking, the sound of roof cracking is heard many times in the working face.It is shown that the stress disturbance in the working face is obvious due to the production and expansion of the hydraulic crack, and a large stress concentration is formed in a certain area, which makes the coal and rock mass within the plastic deformation range, and when the stress concentration exceeds the plastic limit of the coal and rock mass,The strain energy is released and the stress in the coal and rock is transferred to the deep.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD712.6
【參考文獻】
相關(guān)期刊論文 前10條
1 黃炳香;程慶迎;陳樹亮;張統(tǒng);;突出煤層深孔水力致裂驅(qū)趕與淺孔抽采消突研究[J];中國礦業(yè)大學(xué)學(xué)報;2013年05期
2 黃炳香;鄧廣哲;劉長友;;煤巖體水力致裂弱化技術(shù)及其進展[J];中國工程科學(xué);2007年04期
3 劉俊杰,陳雄,張后全,唐春安;運用RFPA~(2D)數(shù)值模擬開采條件下的滲流通道[J];巖石力學(xué)與工程學(xué)報;2005年09期
4 顧沖時,蘇懷智,周紅;碾壓混凝土壩滲流場與應(yīng)力場耦合模型研究[J];應(yīng)用數(shù)學(xué)和力學(xué);2005年03期
5 徐濤,楊天鴻,唐春安,梁正召;孔隙壓力作用下煤巖破裂及聲發(fā)射特性的數(shù)值模擬[J];巖土力學(xué);2004年10期
6 章夢濤,宋維源,潘一山;煤層注水預(yù)防沖擊地壓的研究[J];中國安全科學(xué)學(xué)報;2003年10期
7 楊明舉,關(guān)寶樹;地下水封裸洞儲存LPG耦合問題的變分原理及應(yīng)用[J];巖石力學(xué)與工程學(xué)報;2003年04期
8 冷雪峰,唐春安,李連崇,楊天鴻;非均勻孔隙壓力下水壓致裂的數(shù)值試驗[J];東北大學(xué)學(xué)報;2003年03期
9 王述紅,唐春安,吳獻,趙軼超;砌體構(gòu)件裂縫開展相互作用與貫通數(shù)值分析[J];東北大學(xué)學(xué)報;2002年11期
10 郭啟良,安其美,趙仕廣;水壓致裂應(yīng)力測量在廣州抽水蓄能電站設(shè)計中的應(yīng)用研究[J];巖石力學(xué)與工程學(xué)報;2002年06期
相關(guān)博士學(xué)位論文 前4條
1 程慶迎;低透煤層水力致裂增透與驅(qū)趕瓦斯效應(yīng)研究[D];中國礦業(yè)大學(xué);2012年
2 李根;基于模擬的水巖耦合變形破壞過程及機理研究[D];大連理工大學(xué);2011年
3 黃炳香;煤巖體水力致裂弱化的理論與應(yīng)用研究[D];中國礦業(yè)大學(xué);2009年
4 趙萬春;水力壓裂巖體非線性損傷演化研究[D];大慶石油學(xué)院;2009年
相關(guān)碩士學(xué)位論文 前2條
1 王凱;裂隙含水介質(zhì)滲流應(yīng)力兩場耦合數(shù)值模擬程序設(shè)計應(yīng)用[D];西南交通大學(xué);2008年
2 楊勇;煤巖電磁輻射機理及在沖擊地壓預(yù)測中的應(yīng)用研究[D];遼寧工程技術(shù)大學(xué);2007年
,本文編號:1737790
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1737790.html