舊采破碎區(qū)注漿模擬試驗(yàn)與注漿工藝優(yōu)化研究
本文選題:殘煤復(fù)采 切入點(diǎn):空巷破碎區(qū) 出處:《太原理工大學(xué)》2017年碩士論文
【摘要】:本文以圣華煤業(yè)1301復(fù)采工作面為工程背景,在對(duì)礦井舊采巷道賦存調(diào)查的基礎(chǔ)上,進(jìn)行了散碎煤巖體注漿試驗(yàn),分析了漿液在破碎煤巖散體中的擴(kuò)散規(guī)律,提出了復(fù)采工作面預(yù)注漿工藝。本文主要工作為:1、結(jié)合已知礦井資料,采用探測巷掘進(jìn)與工作面回采的方式對(duì)空巷揭露狀況進(jìn)行統(tǒng)計(jì),對(duì)圣華煤業(yè)1301復(fù)采工作面舊采區(qū)空巷賦存狀況進(jìn)行分析。根據(jù)工作面推進(jìn)與巷道掘進(jìn)過程中空巷揭露特征,繪制巷道空巷布置圖。2、設(shè)計(jì)散碎煤巖堆積體注漿試驗(yàn),通過試驗(yàn)提出漿液擴(kuò)散分析模型,并對(duì)此擴(kuò)散模型進(jìn)行理論分析。采用MATLAB科學(xué)計(jì)算軟件對(duì)不同注漿壓力、水灰比以及滲透系數(shù)參數(shù)影響下的漿液擴(kuò)散規(guī)律進(jìn)行線性回歸分析,得到了漿液水灰比、注漿壓力以及滲透系數(shù)三個(gè)因素與漿液150mm層位處最大擴(kuò)散長度、最大噴射長度、注漿量以及結(jié)石體抗壓強(qiáng)度之間的線性關(guān)系,得到各注漿因素影響下四組線性回歸方程分別為(?)3、通過建立FLUENT流體分析模型對(duì)散碎煤巖堆積體注漿試驗(yàn)?zāi)P瓦M(jìn)行完善,可以推算出漿液最大擴(kuò)散長度與最大噴射長度的估算值,對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行優(yōu)化并得到了相應(yīng)的線性回歸關(guān)系式,分別是(?)4、根據(jù)漿液擴(kuò)散線性回歸關(guān)系式,設(shè)計(jì)復(fù)采區(qū)多輪遞進(jìn)注漿工藝。首先對(duì)復(fù)采破碎區(qū)邊界進(jìn)行注漿,實(shí)現(xiàn)厚度為3m的密實(shí)封堵區(qū),封堵區(qū)漿液水灰比為5:1,注漿壓力1MPa,注漿孔起點(diǎn)距底板1.6m,孔角17°,全長1.36m,孔間距2.5m。固結(jié)區(qū)漿液水灰比為7:1,注漿壓力為9.5MPa,按照超高水材料漿液的擴(kuò)散特征設(shè)計(jì)三輪遞進(jìn)注漿,每輪間隔13.3m,距底板1.5m鉆取注漿孔,傾角分別為26°、10°、6°,孔長分別為9.1m、21.9m、35m,單輪注漿鉆孔間距為10m,每相鄰兩輪注漿孔間距為3.3m。5、通過COMSOL數(shù)值模擬與注漿效果檢測的手段驗(yàn)證了注漿合理性,驗(yàn)證了多輪注漿工藝的合理性,完成注漿加固后的煤壁切割之后較為平滑,且完整性較好,注漿效果良好。
[Abstract]:In this paper, based on the investigation of the occurrence of the old mining roadway, the grouting test of scattered coal and rock mass is carried out on the basis of the engineering background of 1301 remining face of Shenghua Coal Industry, and the diffusion law of the slurry in the broken coal and rock mass is analyzed.The pre-grouting technology in the mining face is put forward.The main work of this paper is: 1, combined with known mine data, using the method of detecting roadway tunneling and mining face to make statistics on the situation of goaf exposure, and to analyze the existing situation of goaf in the old mining area of 1301 remining face of Shenghua coal industry.According to the characteristics of hollow roadway exposure in the process of working face propulsion and roadway excavation, the layout diagram of empty roadway. 2, and the grouting test of scattered coal and rock accumulation body are designed. The slurry diffusion analysis model is put forward through the experiment, and the diffusion model is analyzed theoretically.A linear regression analysis was carried out on the slurry diffusion law under the influence of different grouting pressure, water-cement ratio and permeability coefficient parameters by using MATLAB software, and the water-cement ratio of the slurry was obtained.The linear relationship between grouting pressure and permeability coefficient and the maximum diffusion length, maximum jet length, grouting quantity and compressive strength of stone body at the 150mm layer of the slurry.Four groups of linear regression equations are obtained under the influence of various grouting factors. Through the establishment of FLUENT fluid analysis model to perfect the grouting test model of scattered coal and rock accumulations, the estimated maximum diffusion length and maximum jet length of slurry can be calculated.The experimental data were optimized and the corresponding linear regression formula was obtained, respectively. According to the linear regression equation of slurry diffusion, the multi-wheel progressive grouting process in complex mining area was designed.At first, grouting is carried out on the boundary of remining and crushing area to realize the sealing area with a thickness of 3m. The ratio of water to cement is 5: 1, the grouting pressure is 1MPa, the starting point of grouting hole is 1.6m, the hole angle is 17 擄, the total length is 1.36m, and the hole spacing is 2.5m.In consolidation area, the ratio of water to cement is 7: 1, and the grouting pressure is 9.5 MPA. According to the diffusion characteristics of super-high water material slurry, three rounds of progressive grouting are designed. The interval of each wheel is 13.3 m, and the grouting hole is drilled 1.5 m from the bottom plate.The angle of inclination is 26 擄/ 10 擄/ 6 擄, the length of hole is 9.1 m / 21.9 m / m, the spacing of single wheel grouting hole is 10 m, and the interval between two adjacent grouting holes is 3.3 m 路5 respectively. The rationality of grouting is verified by means of COMSOL numerical simulation and grouting effect test, and the rationality of multi-wheel grouting process is verified.The coal wall after grouting is smooth and complete, and the grouting effect is good.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD265.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李建;李可良;楊龍杰;王繼宇;王俊峰;祁振亞;司青杰;;三軟煤層工作面破碎區(qū)綜合控制技術(shù)[J];中州煤炭;2014年07期
2 劉洋;;采用超前鉆孔注漿過破碎區(qū)的支護(hù)技術(shù)[J];山西煤炭;2010年11期
3 鄢泰寧;段隆臣;Р.К.波格丹諾夫;И.А.斯維什尼科夫;;組合切削具產(chǎn)生的預(yù)破碎區(qū)對(duì)鉆進(jìn)效果的影響[J];探礦工程(巖土鉆掘工程);2010年12期
4 張廷杰,王克光,蒲正利,石明柱;鉬中碳氧偏聚造成的組織缺陷[J];稀有金屬材料與工程;1987年06期
5 袁文伯;陳進(jìn);;軟化巖層中巷道的塑性區(qū)與破碎區(qū)分析[J];煤炭學(xué)報(bào);1986年03期
6 嚴(yán)東晉;孫傳懷;;巖體中爆炸破碎區(qū)半徑計(jì)算方法討論[J];爆破;2010年02期
7 陳萬祥;王明洋;錢岳紅;房營光;吳昊;;爆炸破碎區(qū)堅(jiān)硬巖石動(dòng)力模型及其數(shù)值模擬方法[J];巖石力學(xué)與工程學(xué)報(bào);2012年S1期
8 段樂珍,徐國元,朱成忠;沖擊破巖時(shí)破碎區(qū)擴(kuò)展規(guī)律數(shù)值模擬[J];中南工業(yè)大學(xué)學(xué)報(bào);1998年05期
9 李百林;王保貴;朱守頌;王成;;深井巷道頂板破碎區(qū)注漿加固技術(shù)[J];煤炭工程;2011年12期
10 黃超;;斷層帶破碎區(qū)巷道變形破壞規(guī)律與控制分析[J];煤礦安全;2012年05期
相關(guān)會(huì)議論文 前2條
1 范廣勤;王越;夏建中;盧益民;羅述君;鄭景明;;高地應(yīng)力斷層破碎區(qū)巷道圍巖變形特征與支護(hù)對(duì)策[A];中國巖石力學(xué)與工程學(xué)會(huì)第三次大會(huì)論文集[C];1994年
2 劉磊;張竹鶴;徐勝利;;巖石射孔壓裂和主要影響因素的數(shù)值研究[A];第五屆全國計(jì)算爆炸力學(xué)會(huì)議論文摘要[C];2012年
,本文編號(hào):1723645
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1723645.html