四川攀枝花釩鈦磁鐵礦成礦元素富集狀態(tài)及其成礦意義
本文選題:釩鈦磁鐵礦礦床 切入點:成礦元素賦存狀態(tài) 出處:《西南石油大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:攀枝花釩鈦磁鐵礦礦床位于康滇地軸中段,隸屬于峨眉山大火成巖省內(nèi)帶,富含的礦產(chǎn)資源豐富多樣,其中釩鈦磁鐵礦資源儲量巨大。攀枝花巖體可劃分為上部輝長巖體和底部橄欖巖體兩個部分,其中含礦巖體根據(jù)巖(礦)體的韻律特征,可劃分為底部的暗色輝長巖相帶,中部的層狀輝長巖相帶,上部淺色輝長巖相帶和邊緣巖相帶4個巖相帶。其中,下部巖相帶中可劃分為5個韻律旋回層,中部巖相帶6個韻律旋回層,上部無明顯的韻律旋回層。每一韻律旋回層中,鐵鈦氧化物的含量逐漸由下而上逐漸減少,硅酸鹽礦物含量逐漸增加。攀枝花輝長巖主量元素中SiO2含量介于28.33%-46.67%之間;Na20+K2O含量介于0.71%-3.63%之間;Ti02含量介于 2.74%-8.54%之間;A/NCK 比值介于 0.74-1.38 之間,屬于過鋁質(zhì)-低鉀拉斑質(zhì)堿性巖系列。相伴生的峨眉山玄武巖主量元素中SiO2含量介于45.36%-59.57%之間;Na20+K20 含量介于 1.24%-6.43%之間;Ti02 含量介于 2.21%-5.87%之間;A/NCK比值介于0.82-1.47之間,屬于過鋁質(zhì)-鈣堿性-亞堿性巖系列。攀枝花含礦輝長巖屬于輕稀土富集型,輕重稀土分餾一般,除了下部巖相帶中輝長巖具明顯的Eu正異常外,均顯示不明顯的EU正異常;相伴生的峨眉山玄武巖屬于輕稀土富集型,輕重稀土分餾較為明顯,Eu正異常不明顯。攀枝花含礦輝長巖的微量元素含量普遍較低,且虧損Rb、Th、U、La、Ce等不相容元素,其中,含礦輝長巖比淺色和細(xì)粒不含或含少量礦輝長巖La、Ce、Nd、Sm和Y、Yb、Lu等元素也普遍偏低。據(jù)攀枝花輝長巖高Ti特征,可能其在源區(qū)上與峨眉山高鈦玄武巖類似,源區(qū)物質(zhì)為地幔柱物質(zhì)與巖石圈地幔高程度部分熔融的混溶物質(zhì);而相伴生的峨眉山玄武巖源區(qū)為巖石圈地幔低程度部分熔融物質(zhì)。且兩者均受到一定程度的地殼物質(zhì)的混染作用,其中玄武巖比輝長巖混染作用更加強烈。礦物微區(qū)電子探針分析數(shù)據(jù)顯示,V、Fe、Ti等成礦元素賦存狀態(tài)具有明顯的規(guī)律性:1)不同韻律層中富鐵的層位和貧鐵層位中,橄欖石FeO含量具有富鐵層位低、貧鐵層位高的特點;MgO含量及其相應(yīng)的Fo牌號具有與FeO含量變化相反的韻律式變化。2)斜長石在每個韻律層CaO和A1203自下而上逐漸減少,而Na2O含量則逐漸增加,反映了斜長石An牌號具有自上而下逐漸增加趨勢。3)礦石礦物中鈦鐵礦,在塊狀礦石中MgO、Ti02含量最高,FeO、Fe203含量最低,而貧鐵層位中這些氧化物含量卻與之相反,而富鐵層位中這些氧化物含量基本變化不大。磁鐵礦中MgO和TiO2含量具有和鈦鐵礦一致的變化規(guī)律,并且鈦鐵礦這兩種氧化物的含量與磁鐵礦中的含量基本呈正相關(guān),卻與Al2O3呈反相關(guān)。上述工作查明了成礦元素在不同巖相帶,不同礦物中的變化規(guī)律,揭示了攀枝花含礦巖體可能是經(jīng)過多期次富含鐵鈦巖漿補充的復(fù)合巖體,每次新巖漿的加入都伴隨著氧逸度是遞進(jìn)式銳減。成礦元素的富集不僅受含礦巖體的母巖漿的成分的影響,還受巖漿的性質(zhì)、氧逸度、分異程度、揮發(fā)組分的制約。含礦巖體的多期次脈動疊加、巖漿深部的結(jié)晶分異與重力分異是底部成礦最重要的控制因素。與地幔柱作用有成因聯(lián)系的多期次巖漿的侵入與噴發(fā),不僅有利于V-Fe-Ti等成礦物質(zhì)富集及沉淀,而且在區(qū)域上也形成了與之相伴生的銅鎳硫化物礦床,構(gòu)成比較完整的具有成因聯(lián)系的巖漿成礦系列。根據(jù)不同礦物相中賦存的成礦元素具有的明顯差異性,可為選礦工藝的制定提供技術(shù)支撐。
[Abstract]:Panzhihua V-Ti-magnetite deposit is located in the middle section of KANGTIEN axis, belonging to the Mount Emei fire igneous province, rich in mineral resources is abundant, the huge reserves of vanadium titanium magnetite resource. Panzhihua rock can be divided into two parts the upper gabbro and peridotite bottom, the ore rock rock (ore) according to the prosodic features of body. Can be divided into dark glow with long at the bottom of the lithofacies, layered gabbro central facies, upper gabbro facies and light edge facies of 4 lithofacies. The lower facies can be divided into 5 rhythm layers, 6 rhythm zone central facies, upper layer without rhythm obviously. Each layer of rhythm, the content of Fe Ti oxides gradually decreased from bottom to top, silicate mineral content increased gradually. The content of SiO2 between 28.33%-46.67% of Panzhihua gabbro majorelements in Na20+K2O; Between the content between 0.71%-3.63%; the content of Ti02 ranged between 2.74%-8.54%; the ratio of A/NCK between 0.74-1.38, which belongs to peraluminous and low potassium tholeiitic to alkalic series. Between 45.36%-59.57% SiO2 in Mount Emei basalt main elements associated; the content of Na20+K20 ranged between 1.24%-6.43%; the content of Ti02 ranged between 2.21%-5.87%; the ratio of A/NCK between 0.82-1.47, which belongs to peraluminous calc alkaline and sub alkaline series. Panzhihua ore gabbro belongs to LREE enrichment, REE fractionation, in addition to lower facies with gabbro obvious positive Eu anomaly, showed no obvious positive EU anomaly; associated Mount Emei basalts belong to the LREE enrichment type, REE fractionation obviously, Eu positive anomaly is not obvious. The content of trace elements in Panzhihua ore gabbro is generally low, and the loss of Rb, Th, U, La, Ce and other incompatible Among them, the ore elements of gabbro than light and fine ore containing no or little Ce, Nd, gabbro, La, Sm and Y, Yb, Lu and other elements are generally low. According to the characteristics of Panzhihua gabbro high Ti, which may be in the source region and the Mount Emei high titanium Xuan Wuyan is similar to that of source material for miscible substances the high degree of partial melting of mantle plume and lithospheric mantle; and the associated Mount Emei Xuan Wuyan lithospheric mantle source region was low degree partial melting material. And both of them are contaminated by crustal material to a certain extent, the Xuan Wuyan gabbro contamination more strongly. Mineral electron microprobe analysis data showed that V Fe, Ti, the occurrence state of the metallogenic elements have obvious regularity: 1) different layers of rhythmite iron rich and poor iron layer, FeO content of olivine with iron rich layer is low, poor iron layer high; the MgO content and the corresponding grade of Fo With the rhythmic change with the change of FeO content in.2) plagioclase gradually decreased in layers CaO and A1203 each rhythm from the bottom up, while Na2O content was increased gradually, reflecting the An number of plagioclase has increased gradually from top to bottom).3 ilmenite ore minerals, massive ore in MgO, the highest content of Ti02, FeO, Fe203 content the lowest, while poor iron oxide content in these layers was the opposite, and the iron rich layers of these basic oxide content changes little. With MgO and TiO2 content in magnetite and ilmenite rules consistent changes, and the basic content of titanium iron ore and magnetite content was two in the oxide, but inversely associated with the Al2O3. The work to identify the ore-forming elements in different facies, the change regularity of different minerals in Panzhihua, reveals the ore bearing rock is possible through many times of magma rich in Fe Ti added Composite rock, with each new magma are accompanied by oxygen fugacity is progressive collapse. Enrichment of ore-forming elements not only by ore rock magma composition effects, but also by the nature of the magma, oxygen fugacity, degree of differentiation, restricting the volatile components. Orerock multi-stage pulse dynamic superposition and gravity crystallization deep magma differentiation is the most important control factors of mineralization. The bottom has eruption and intrusion related many times of magma and mantle plume, not only conducive to the enrichment and precipitation of minerals such as V-Fe-Ti, and in the region also formed with copper nickel sulfide deposit, a relatively complete associated with genesis of magma metallogenic series. According to the difference of ore-forming elements in different mineral phases in the feature for the beneficiation process formulated to provide technical support.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P618.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;釩鈦磁鐵礦中鎳、鈷、鉻、銅、釩的光譜測定[J];地球化學(xué);1972年03期
2 ;釩鈦磁鐵礦綜合利用重點實驗室[J];大自然探索;1998年02期
3 龔榮洲,於崇文,岑況;成礦元素富集機制的量子地球化學(xué)研究——以攀枝花釩鈦磁鐵礦礦床為例[J];地學(xué)前緣;2000年01期
4 肖六均;攀枝花釩鈦磁鐵礦資源及礦物磁性特征[J];金屬礦山;2001年01期
5 宋新艷;;過氧化氫光度法測定釩鈦磁鐵礦中二氧化鈦[J];冶金分析;2006年05期
6 趙琰;郭科;;基于灰色系統(tǒng)算法在攀枝花釩鈦磁鐵礦預(yù)測中的應(yīng)用[J];物探化探計算技術(shù);2007年04期
7 劉英俊;釩鈦磁鐵礦礦石結(jié)構(gòu)構(gòu)造與綜合利用的關(guān)系[J];地質(zhì)地球化學(xué);1979年09期
8 吳本羨;;釩鈦磁鐵礦主要有益元素賦存狀態(tài)的研究與綜合利用[J];礦物巖石;1982年01期
9 傅文章;攀西釩鈦磁鐵礦資源特征及綜合利用問題的基本分析[J];礦產(chǎn)綜合利用;1996年01期
10 蔣薇;X射線熒光光譜法測定釩鈦磁鐵礦成分[J];光譜實驗室;2005年05期
相關(guān)會議論文 前10條
1 徐爭啟;;攀枝花釩鈦磁鐵礦區(qū)水系沉積物的組成及重金屬特征[A];中國礦物巖石地球化學(xué)學(xué)會第12屆學(xué)術(shù)年會論文集[C];2009年
2 陳廷愚;NI苊,
本文編號:1633895
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1633895.html