高地應(yīng)力硬巖沖擊動(dòng)態(tài)力學(xué)性能研究
本文選題:SHPB試驗(yàn) 切入點(diǎn):動(dòng)態(tài)力學(xué)性能 出處:《昆明理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:礦產(chǎn)資源地下開采是一個(gè)自上而下的過程,開采過程中采掘工作面隨資源賦存狀況逐步下降,開采深度逐漸增加,當(dāng)深度達(dá)到一定程度礦井進(jìn)入深部開采。深部巖體開挖前已處于較高的應(yīng)力場中,高地應(yīng)力不僅容易導(dǎo)致深部巷道變形加劇、礦柱失穩(wěn)、巖爆現(xiàn)象頻發(fā)等,而且?guī)r石在有高應(yīng)力作用時(shí)力學(xué)性質(zhì)發(fā)生改變,與淺部巖體有較大差別。爆破在硬巖開采過程中起著尤為重要的破巖作用,采礦過程中炸藥爆炸對(duì)周圍巖石造成的應(yīng)變率在101s-1~103s-之間,研究高應(yīng)變率作用及高應(yīng)力高應(yīng)變率共同作用下巖石表現(xiàn)的動(dòng)態(tài)力學(xué)性質(zhì),對(duì)安全高效的開采深部礦體有重要意義。玉溪礦業(yè)有限公司獅子山礦現(xiàn)已開拓至十八中段,未來生產(chǎn)與開拓的主要中段已達(dá)到深部開采范疇,本文圍繞課題《獅子山礦深部采礦工藝的研究和應(yīng)用》的子課題《深部礦石、巖石沖擊動(dòng)態(tài)力學(xué)性能的試驗(yàn)研究》展開。在閱讀大量文獻(xiàn)的基礎(chǔ)上進(jìn)行理論分析、現(xiàn)場采樣、室內(nèi)試驗(yàn),對(duì)獅子山礦深部礦巖的動(dòng)態(tài)力學(xué)性能進(jìn)行了較為系統(tǒng)的研究。主要內(nèi)容和結(jié)論性成果如下:(1)SHPB沖擊試驗(yàn)中礦巖表現(xiàn)出很強(qiáng)的脆性,沖擊對(duì)試件造成的應(yīng)變、應(yīng)變率、平均應(yīng)變率變化范圍都比較小,而動(dòng)態(tài)強(qiáng)度、動(dòng)彈性模量較高。即使以很高的動(dòng)荷載加載,仍然沒有獲得較大的應(yīng)變率。試驗(yàn)中對(duì)絕大部分試件造成的應(yīng)變?cè)?.008以內(nèi),平均應(yīng)變率在70s-1以內(nèi),最大動(dòng)彈性模量則超過了 140GPa。(2)現(xiàn)場取樣的白云巖均質(zhì)性較差,但試件動(dòng)態(tài)強(qiáng)度與平均應(yīng)變率之間整體上表現(xiàn)出較強(qiáng)的正相關(guān)性;一維動(dòng)靜組合與三維(12MPa圍壓)動(dòng)靜組合試驗(yàn)中,試件動(dòng)態(tài)強(qiáng)度(相同或相近應(yīng)變率時(shí))先隨軸壓增加增大,而后出現(xiàn)了減小的趨勢(shì),在24MPa軸壓附近動(dòng)態(tài)強(qiáng)度達(dá)到最大值。圍壓作用對(duì)試件的力學(xué)性能有影響,試驗(yàn)中軸壓固定在24MPa,圍壓在4MPa時(shí)試件強(qiáng)度與無圍壓狀態(tài)的差別不明顯,但8MPa和12MPa圍壓作用時(shí)動(dòng)態(tài)強(qiáng)度增強(qiáng)較大。(3)—定范圍內(nèi)的軸壓、圍壓作用使試件儲(chǔ)存了應(yīng)變能,增強(qiáng)了其抗沖擊性能,不利于試件對(duì)沖擊能量的吸收,試件雖然破壞整體卻可能表現(xiàn)出釋放能量,大量能量以其他形式散失。但隨著沖擊荷載的不斷增大,用于破碎試件的部分沖擊能逐漸大于其自身釋放出的能量,巖石整體逐漸向吸能趨勢(shì)轉(zhuǎn)變。
[Abstract]:Underground mining of mineral resources is a top-down process. In the process of mining, the mining face decreases gradually with the occurrence of resources, and the mining depth increases gradually. When the depth of the mine reaches a certain level, the deep rock mass is already in a high stress field before excavation. The high ground stress not only causes the deformation of the deep roadway to intensify, the pillar is unstable, and the phenomenon of rock burst occurs frequently, etc. In addition, the mechanical properties of rock are changed under the action of high stress, which is different from that of shallow rock mass, and blasting plays a particularly important role in breaking rock in the process of hard rock mining. In the mining process, the strain rate caused by explosive explosion on the surrounding rock is between 101s and 103s-. The dynamic mechanical properties of the rock under the combined action of high strain rate and high stress and strain rate are studied. It is of great significance for safe and efficient mining of deep orebodies. Shizishan Mine of Yuxi Mining Co., Ltd. has been developed to the middle of 18, and the main middle section of future production and development has reached the scope of deep mining. This paper focuses on the research and application of deep mining technology in Shizishan Mine, which is a sub-subject < Deep Ore, Experimental study on dynamic Mechanical Properties of Rock impact,'. Based on reading a large number of literatures, theoretical analysis and field sampling are carried out. In laboratory tests, the dynamic mechanical properties of deep ore rocks in Shizishan Mine have been systematically studied. The main contents and conclusions are as follows: in the impact test of the rock, the rock shows strong brittleness, and the strain and strain rate caused by the impact on the specimen. The range of average strain rate is relatively small, but the dynamic strength and dynamic elastic modulus are higher. Even if loaded with very high dynamic load, no large strain rate has been obtained. The strain caused by the test for most of the specimens is less than 0.008. The average strain rate is less than 70 s ~ (-1), and the maximum dynamic elastic modulus is more than 140 GPA. 2) the dolomite sampled in the field is poor in homogeneity, but the dynamic strength of the specimen and the average strain rate are positively correlated as a whole. The dynamic strength of the specimen (at the same or similar strain rate) firstly increases with axial compression and then decreases, in the dynamic and dynamic combination test of one-dimensional dynamic and dynamic combination and three-dimensional 12MPa confining pressure, and the dynamic strength of the specimen increases with the axial compression at the same or similar strain rate. The dynamic strength near the axial pressure of 24MPa reaches the maximum. The confining pressure has an effect on the mechanical properties of the specimen. In the test, the strength of the specimen is fixed at 24MPa, and the difference between the strength of the specimen and that of the specimen without confining pressure is not obvious when the confining pressure is at 4MPa. However, under the confining pressure of 8MPa and 12MPa, the dynamic strength increases greatly in the range of axial compression. The confining pressure causes the specimen to store the strain energy and enhance its impact resistance, which is not conducive to the absorption of the impact energy of the specimen. Although the whole specimen may have released energy, a large amount of energy may be lost in other forms. However, with the increasing of impact load, the partial impact energy used to break the specimen is gradually larger than the energy released by itself. The whole rock gradually changes to the trend of energy absorption.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD324
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李洪濤;王志強(qiáng);姚強(qiáng);劉勇林;華天波;高尚;;石英云母片巖動(dòng)力學(xué)特性實(shí)驗(yàn)及爆破裂紋擴(kuò)展研究[J];巖石力學(xué)與工程學(xué)報(bào);2015年10期
2 周宗紅;章雅琦;楊安國;王春;;白云巖三維動(dòng)靜組合加載力學(xué)特性試驗(yàn)研究[J];煤炭學(xué)報(bào);2015年05期
3 章雅琦;周宗紅;金小川;楊安國;;動(dòng)靜組合加載下白云巖碎屑破壞特征研究[J];礦業(yè)研究與開發(fā);2014年07期
4 李成武;王金貴;胡泊;王川;;煤巖材料SHPB實(shí)驗(yàn)被動(dòng)圍壓數(shù)值模擬研究[J];采礦與安全工程學(xué)報(bào);2014年06期
5 金解放;李夕兵;邱燦;陶偉;周學(xué)進(jìn);;巖石循環(huán)沖擊損傷演化模型及靜載荷對(duì)損傷累積的影響[J];巖石力學(xué)與工程學(xué)報(bào);2014年08期
6 殷志強(qiáng);李夕兵;馬海峰;李傳明;;圍壓卸荷條件砂巖動(dòng)靜組合加載碎塊分維特性[J];振動(dòng)與沖擊;2014年09期
7 馬芹永;張經(jīng)雙;陳文峰;袁璞;;人工凍土圍壓SHPB試驗(yàn)與沖擊壓縮特性分析[J];巖土力學(xué);2014年03期
8 馬芹永;袁璞;陳文峰;張經(jīng)雙;;人工凍土單軸與圍壓狀態(tài)動(dòng)力學(xué)性能對(duì)比分析[J];地下空間與工程學(xué)報(bào);2014年01期
9 平琦;馬芹永;盧小雨;袁璞;;被動(dòng)圍壓條件下巖石材料沖擊壓縮試驗(yàn)研究[J];振動(dòng)與沖擊;2014年02期
10 盧玉斌;李云桂;于水生;;基于數(shù)值模擬研究巖石材料沖擊載荷下的動(dòng)態(tài)抗壓強(qiáng)度增強(qiáng)[J];礦物學(xué)報(bào);2014年01期
相關(guān)會(huì)議論文 前2條
1 于亞倫;;高應(yīng)變率下的巖石動(dòng)載特性對(duì)爆破效果的影響[A];第三屆全國巖石動(dòng)力學(xué)學(xué)術(shù)會(huì)議論文選集[C];1992年
2 錢七虎;;非線性巖石力學(xué)的新進(jìn)展——深部巖體力學(xué)的若干關(guān)鍵問題[A];第八次全國巖石力學(xué)與工程學(xué)術(shù)大會(huì)論文集[C];2004年
相關(guān)博士學(xué)位論文 前7條
1 平琦;煤礦深部巖石動(dòng)態(tài)力學(xué)特性試驗(yàn)研究及其應(yīng)用[D];安徽理工大學(xué);2013年
2 金解放;靜載荷與循環(huán)沖擊組合作用下巖石動(dòng)態(tài)力學(xué)特性研究[D];中南大學(xué);2012年
3 尹土兵;考慮溫度效應(yīng)的巖石動(dòng)力學(xué)行為研究[D];中南大學(xué);2012年
4 殷志強(qiáng);高應(yīng)力儲(chǔ)能巖體動(dòng)力擾動(dòng)破裂特征研究[D];中南大學(xué);2012年
5 洪亮;沖擊荷載下巖石強(qiáng)度及破碎能耗特征的尺寸效應(yīng)研究[D];中南大學(xué);2008年
6 葉洲元;動(dòng)力擾動(dòng)下高應(yīng)力巖石力學(xué)特性研究[D];中南大學(xué);2008年
7 黃書嶺;高應(yīng)力下脆性巖石的力學(xué)模型與工程應(yīng)用研究[D];中國科學(xué)院研究生院(武漢巖土力學(xué)研究所);2008年
相關(guān)碩士學(xué)位論文 前7條
1 馬文偉;巖石動(dòng)態(tài)力學(xué)特性及鉆爆掘進(jìn)巷道破巖過程分析[D];安徽理工大學(xué);2014年
2 占國平;基于分離式霍普金森壓桿實(shí)驗(yàn)技術(shù)的脆性材料動(dòng)態(tài)性能研究[D];武漢紡織大學(xué);2013年
3 謝理想;軟弱巖石在動(dòng)載作用下的力學(xué)性能及本構(gòu)模型研究[D];安徽理工大學(xué);2013年
4 郝海明;爆破振動(dòng)對(duì)巖巷混凝土噴層影響數(shù)值模擬研究[D];安徽理工大學(xué);2013年
5 譚清;高應(yīng)力下大理巖卸荷破裂分形及應(yīng)變能轉(zhuǎn)化規(guī)律研究[D];重慶大學(xué);2012年
6 董海威;應(yīng)力三軸度與應(yīng)變率對(duì)混凝土損傷演化的影響[D];寧波大學(xué);2012年
7 曲忠偉;巖石爆破中炸藥爆炸應(yīng)力波分布的測(cè)試與研究[D];安徽理工大學(xué);2009年
,本文編號(hào):1601798
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1601798.html