煤炭地下氣化覆巖溫度和裂隙的試驗(yàn)與數(shù)值模擬研究
本文選題:地下氣化 切入點(diǎn):溫度場(chǎng) 出處:《中國(guó)礦業(yè)大學(xué)(北京)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:煤炭地下氣化技術(shù)是一種可以將煤轉(zhuǎn)換成可燃?xì)怏w的化工技術(shù),是國(guó)家提倡的潔凈有效利用煤炭資源的先進(jìn)技術(shù)。煤炭地下氣化集建井、采煤、地面氣化三大工藝為一體,變傳統(tǒng)的物理采煤為化學(xué)采煤,省去了龐大的煤炭開采、運(yùn)輸、洗選、氣化等工藝的設(shè)備,具有安全性好、投資少、效益高、污染少等優(yōu)點(diǎn),深受世界各國(guó)的重視,被譽(yù)為第二代采煤方法。與傳統(tǒng)采煤和地面氣化相比,煤炭的地下氣化技術(shù)有以下優(yōu)勢(shì):可以回收傳統(tǒng)方法開采不經(jīng)濟(jì)和無法開采的煤炭資源;由于煤炭無須人工開采,地下氣化最大限度的減少了礦工的健康和安全問題;減少了固體廢物排放很少;減少了對(duì)社會(huì)經(jīng)濟(jì)的影響;投資省,煤氣成本低。國(guó)家計(jì)委、國(guó)家經(jīng)貿(mào)委、國(guó)家煤炭工業(yè)局、國(guó)家科技部等都對(duì)煤炭氣化技術(shù)制定了“十五”期間的發(fā)展規(guī)劃、綱要、計(jì)劃,提出要推進(jìn)煤炭氣化技術(shù)的開發(fā)和應(yīng)用,繼續(xù)做好煤炭地下氣化試驗(yàn),探索煤炭開發(fā)和利用的新途徑,引進(jìn)國(guó)外先進(jìn)的煤炭氣化技術(shù)。煤炭地下氣化開采完成以后,將會(huì)形成巨大的燃空區(qū)域,改變頂板的支撐條件,使圍巖的應(yīng)力狀態(tài)和巖石的強(qiáng)度發(fā)生改變,進(jìn)而在圍巖中產(chǎn)生裂隙帶,裂隙帶的產(chǎn)生直接對(duì)燃空區(qū)圍巖的穩(wěn)定性和滲透性產(chǎn)生影響。經(jīng)過地下水長(zhǎng)期的浸泡和淋溶,灰渣中的有害有機(jī)物和微量元素就會(huì)溶解于水中,通過導(dǎo)水裂隙帶進(jìn)入到含水層中,從而引起地下水質(zhì)的污染。近年來,盡管人們對(duì)燃空區(qū)的上覆巖層破壞規(guī)律做了不少理論上的研究,但是大都直是停留在應(yīng)力-應(yīng)變的角度來討論氣化煤層上覆巖層的破壞規(guī)律。對(duì)于燃燒高溫和上覆巖層破壞之間的關(guān)系的解釋還很少。因此,建立氣化高溫作用下的力學(xué)模型,模擬氣化采場(chǎng)上覆巖層的破壞規(guī)律,并根據(jù)上覆巖層的破壞規(guī)律提出氣化研究區(qū)的安全生產(chǎn)和施工措施具有非常重要的意義。論文以新奧集團(tuán)烏蘭察布市玫瑰營(yíng)礦為研究對(duì)象,對(duì)研究區(qū)所取的巖石試件進(jìn)行熱物理試驗(yàn)和力學(xué)試驗(yàn),通過實(shí)驗(yàn)室試驗(yàn)研究了煤層頂?shù)装宀煌瑤r性巖石在常溫到1000℃的溫度條件下的熱物理性質(zhì)(密度,比熱容,導(dǎo)熱系數(shù)等),建立了氣化煤層頂?shù)装宀煌瑤r性巖石的熱物理性質(zhì)(密度,比熱容,導(dǎo)熱系數(shù)等)隨溫度變化的函數(shù)關(guān)系式。根據(jù)擬合的熱物理參數(shù)隨溫度變化的函數(shù)關(guān)系式,建立COMSOL Multiphysics溫度場(chǎng)概念模型,并根據(jù)各種巖石熱物理參數(shù)隨溫度變化的曲線方程和溫度場(chǎng)控制方程模擬了煤炭氣化過程中的溫度場(chǎng),研究了在氣化過程中溫度場(chǎng)隨燃燒長(zhǎng)度變化的分布情況。通過試驗(yàn)研究了煤層頂板和底板的主要巖層頂板細(xì)砂巖、頂板砂質(zhì)泥巖、頂板泥巖、底板細(xì)砂巖和底板泥巖巖石試件在常溫下的力學(xué)性質(zhì),所獲的力學(xué)參數(shù)(彈性模量、泊松比、抗壓強(qiáng)度、抗剪強(qiáng)度、抗拉強(qiáng)度、內(nèi)摩擦角、粘聚力)。參考力學(xué)參數(shù)隨溫度變化的研究成果,建立FLAC3D數(shù)值模型,結(jié)合氣化過程中溫度場(chǎng)的變化情況對(duì)氣化煤層覆巖的裂隙場(chǎng)進(jìn)行了模擬研究。煤炭地下氣化開采完成以后,將會(huì)形成巨大的燃空區(qū)域,改變頂板的支撐條件,使圍巖的應(yīng)力狀態(tài)和巖石的強(qiáng)度發(fā)生改變,進(jìn)而在圍巖中產(chǎn)生裂隙帶,裂隙帶的產(chǎn)生直接對(duì)燃空區(qū)圍巖的穩(wěn)定性和滲透性產(chǎn)生影響。經(jīng)過地下水長(zhǎng)期的浸泡和淋溶,灰渣中的有害有機(jī)物和微量元素就會(huì)溶解于水中,通過導(dǎo)水裂隙帶進(jìn)入到含水層中,從而引起地下水質(zhì)的污染。針對(duì)這一污染現(xiàn)象,提出了燃空區(qū)注漿充填的治理建議。論文得到主要研究成果如下:1.通過對(duì)研究區(qū)資料的收集,確定研究區(qū)的地理位置以及交通狀況,然后對(duì)研究區(qū)的區(qū)域地質(zhì)概況做了簡(jiǎn)單的總結(jié)。研究區(qū)地層由老到新主要有:中太古界集寧(巖)群上部(Ar2j2)及下部(Ar2j1)、中生界侏羅系上統(tǒng)火山巖段(J32)、新生界古近系漸新統(tǒng)呼爾井組(E3h)、新近系中新統(tǒng)漢諾壩組(N1h)、新近系上新統(tǒng)寶格達(dá)烏拉組(N2b)、第四系全新統(tǒng)(Qh l)、(Qh al+pl)。研究區(qū)所在的內(nèi)蒙古自治區(qū)集寧煤田玫瑰營(yíng)子礦區(qū)內(nèi)共發(fā)育斷層7條,DF1~DF7,均為正斷層,對(duì)煤炭地下氣化所在的研究區(qū)地層及煤層影響不明顯,這是煤炭地下氣化的可行性的先決條件。研究區(qū)內(nèi)賦存1#和2#兩層煤,其中2#煤層為煤炭地下氣化的目標(biāo)煤層,煤層的厚度較大,是煤炭地下氣化的可行性的物質(zhì)基礎(chǔ)。2.通過實(shí)驗(yàn)室試驗(yàn)研究了煤層頂?shù)装宀煌瑤r性巖石在常溫到1000℃的溫度條件下的熱物理性質(zhì)(密度,比熱容,導(dǎo)熱系數(shù)等),擬合了熱物理參數(shù)隨溫度變化的曲線方程,建立COMSOL Multiphysics溫度場(chǎng)概念模型,并根據(jù)各種巖石熱物理參數(shù)隨溫度變化的曲線方程和溫度場(chǎng)控制方程模擬了煤炭氣化過程中的溫度場(chǎng)分布情況。在初始燃燒階段,煤層燃空區(qū)范圍很小,煤層頂?shù)装宓臏囟然鞠嗟榷急3衷谧畲笾?000℃,溫度以熱傳導(dǎo)的方式向圍巖四周擴(kuò)散,當(dāng)燃燒長(zhǎng)度L=100m時(shí),燃空區(qū)左端煤壁的溫度接近于巖層的初始溫度20℃。當(dāng)燃燒長(zhǎng)度L=100m時(shí),達(dá)到最大,煤層頂板20.5m的范圍內(nèi)溫度大于20℃,煤層底板23.1m的范圍內(nèi)溫度大于20℃。3.通過試驗(yàn)研究了煤層頂板和底板的主要巖層頂板細(xì)砂巖、頂板砂質(zhì)泥巖、頂板泥巖、底板細(xì)砂巖和底板泥巖巖石試件在常溫下的力學(xué)性質(zhì),所獲的力學(xué)參數(shù)(彈性模量、泊松比、抗壓強(qiáng)度、抗剪強(qiáng)度、抗拉強(qiáng)度、內(nèi)摩擦角、粘聚力)對(duì)于研究燃空區(qū)頂板覆巖的破壞規(guī)律,以及裂隙帶的發(fā)育規(guī)律具有十分重要的意義。4.根據(jù)氣化燃燒煤層泥巖頂板的力學(xué)參數(shù)隨氣化高溫變化而改變的性質(zhì)規(guī)律和氣化過程中的氣化溫度在頂板的傳播分布規(guī)律,建立FLAC3D力學(xué)模型。依據(jù)4條基本假設(shè),通過改變泥巖頂板力學(xué)參數(shù)的方式來反演極高溫度下的氣化過程。對(duì)氣化結(jié)束時(shí)和氣化結(jié)束5年后兩種情況下的模擬結(jié)果每10m為一組進(jìn)行對(duì)比分析,相同位置處在氣化結(jié)束5年的模擬結(jié)果中,燃空裂隙高度會(huì)有不同程度的增高。同時(shí),兩種情形下的燃空裂隙高度增量受煤層的氣化厚度影響最為明顯。通過運(yùn)用Surfer11繪制兩種情況下燃空裂隙發(fā)育范圍和高度對(duì)比圖,在氣化燃空區(qū)的前段,氣化裂隙帶的高度逐漸增加,并都在距離氣化起始位置60 m處出現(xiàn)最大值,裂隙高度超過40 m的區(qū)域都集中在氣化燃空區(qū)的前段。在氣化結(jié)束5年后,燃空裂隙高度超過35m的范圍明顯向前推進(jìn)了。5.煤炭地下氣化開采完成以后,將會(huì)形成巨大的燃空區(qū)域,改變頂板的支撐條件,使圍巖的應(yīng)力狀態(tài)和巖石的強(qiáng)度發(fā)生改變,進(jìn)而在圍巖中產(chǎn)生裂隙帶,裂隙帶的產(chǎn)生直接對(duì)燃空區(qū)圍巖的穩(wěn)定性和滲透性產(chǎn)生影響。經(jīng)過地下水長(zhǎng)期的浸泡和淋溶,灰渣中的有害有機(jī)物和微量元素就會(huì)溶解于水中,通過導(dǎo)水裂隙帶進(jìn)入到含水層中,從而引起地下水質(zhì)的污染。針對(duì)這一污染現(xiàn)象,提出了燃空區(qū)注漿充填的治理建議。
[Abstract]:Underground coal gasification technology is a kind of coal can be converted into combustible gas chemical technology, advanced technology is the country to promote the clean and efficient use of coal resources. Coal underground gasification in mine construction, coal mining, ground gasification technology three as a whole, change the traditional physical coal mining coal mining chemical, eliminates the need for extensive coal mining transport, washing, gasification process equipment, has good safety, less investment, high efficiency, less pollution and so on, by the world attention, known as the second generation of mining methods. Compared with the traditional coal mining and underground gasification, underground coal gasification technology has the following advantages: the traditional method of mining recovery can not the economy and not due to coal mining of coal resources; mining underground gasification without manual, to minimize the health and safety of miners; reduce the solid waste emissions reduced to the social economy is small; The influence of gas; investment, low cost. The State Planning Commission, the State Economic and Trade Commission, the State Bureau of coal industry, the State Ministry of science and technology of coal gasification technology developed during "fifteen" development plan, program, plan, put forward to promote the development and application of coal gasification technology, continue to do the exploration of underground coal gasification test. A new way of coal development and utilization of coal gasification technology, the introduction of foreign advanced. After the underground gasification of coal mining is completed, will form a huge change in the fuel air area, roof support conditions, the rock stress state and rock strength change, resulting in fracture zone in the surrounding rock, the fractured zone directly influence on the stability of goaf surrounding rock and gas permeability. After long term groundwater soaking and leaching, harmful organic matter in ash and trace elements will be dissolved in water, the water flowing fractured zone Into the aquifer, which caused by underground water pollution. In recent years, while doing a lot of research on the theory of damage to the overlying strata of combustion space area of the people, but the most direct is to stay in the stress-strain angle to discuss the failure law of the overburden on the gasification of coal seam on the relation between combustion. High temperature and overburden failure explanation is rarely. Therefore, the mechanics model is established under the action of high temperature gasification, gasification simulation of mining overburden failure law field, has very important significance and put forward the gasification of area according to the failure law of the overburden of the safe production and construction measures. According to the new Austrian group in Wulanchabu the city rose camp mine as the research object, the study area of rock specimen thermal physical test and the mechanical test, through laboratory tests on coal seam roof and floor of different rocks at room temperature to 1000 DEG C The thermal physical properties of temperature conditions (density, specific heat capacity, thermal conductivity, thermal physical properties) established the gasification coal seams of different rocks (density, specific heat capacity, thermal conductivity) relation with temperature changes. According to the functional relation of the thermal physical parameters of fitting with the temperature changing, establish the conceptual model of COMSOL Multiphysics temperature field, and according to the thermal physical parameters of all kinds of rocks with the temperature change curve equation and the temperature field control equation to simulate the temperature field of coal gasification process, gasification process in the temperature field distribution with the combustion length change was studied. Through the tests of coal seam roof and floor of the main roof fine the roof of sandstone, sandy mudstone, fine sandstone and mudstone roof, floor and floor mudstone rock specimens under normal temperature and mechanical properties, the mechanical parameters (elastic modulus, Poisson's ratio, compressive strength Degree, shear strength, tensile strength, friction angle, cohesion). Research of mechanical parameters with the temperature change, the FLAC3D model is established, combined with the change of the temperature field in the gasification process of coal gasification of overlying rock fissure field were studied. After the completion of the mining of underground coal gasification, combustion will be formed the empty area is huge, change the supporting conditions of roof, the surrounding rock stress state and rock strength change, resulting in fracture zone in the surrounding rock, the fractured zone has direct combustion on the stability of goaf surrounding rock permeability and generation influence. After long term groundwater soaking and leaching of harmful organic matter, ash and trace elements will be dissolved in water into the aquifer through the water flowing fractured zone, which caused by underground water pollution. The pollution phenomenon, the cavity grouting treatment recommendations. The main research results are as follows: 1. by analyzing the data collected in the research area, geographical location and traffic conditions, then the regional geology of the study area were briefly summarized. The strata in the study area are mainly from the old to the new in the Archean Jining group (rock) (Ar2j2) (Upper and lower Ar2j1), Mesozoic Jurassic volcano rock section (J32), Cenozoic Paleogene Oligocene call Seoul well group (E3h), Neogene Miocene Hannuoba group (N1h), Neogene new Tongbao group (N2b), Al ula quaternary Holocene (Qh L (Qh). Al+pl). The study area is located in the Inner Mongolia Autonomous Region Jining coal rose Ying Zi within the mining area were developed in 7 faults, DF1~DF7, are normal faults, influence on strata and coal research area of underground coal gasification is not obvious, it is the prerequisite for the feasibility of underground coal gasification. Study on the occurrence of 1# and 2# in the region of two layers coal, The 2# coal seam underground coal gasification target coal seam, coal seam thickness, is the material basis of.2. feasibility of underground coal gasification by laboratory experimental study on coal seam roof and floor rock in different thermal physical properties of room temperature to 1000 DEG C under the temperature conditions (density, specific heat capacity, thermal conductivity, heat equation) the physical parameters were fitted with the temperature changing, establish the conceptual model of COMSOL Multiphysics temperature field, and according to the thermal physical parameters of all kinds of rocks with the temperature change curve equation and the temperature field control equation to simulate the temperature distribution of coal gasification process. In the initial stage of combustion, coal burning range of goaf is very small, the temperature is basically the same seam the top and bottom are kept to a maximum of 1000 DEG C, spread to the surrounding rock around the temperature the heat conduction method, when the length of L=100m combustion, coal mined out area at the left end of the temperature is close to the wall In the initial formation temperature of 20 degrees Celsius. When the combustion length L=100m, maximum temperature range of coal seam roof in 20.5M is greater than 20 DEG C, the temperature range of coal seam floor in 23.1m is greater than 20 DEG.3. are studied through the experiment of coal seam roof and floor of the main roof roof sandstone, sand mudstone, mudstone roof, floor fine the sandstone and mudstone floor rock specimens under normal temperature and mechanical properties, the mechanical parameters (elastic modulus, Poisson's ratio, compressive strength, shear strength, tensile strength, friction angle, cohesion) for the study of ignition failure law of goaf roof, and crack zone development law with gasification temperature the nature of law and the gasification process is of great significance to.4. according to the mechanical parameters of coal gasification and combustion with high temperature gasification mudstone roof and the changes in the distribution law of main roof, the establishment of FLAC3D model on the basis of the 4 force. A basic assumption, by changing the mechanical parameters of mudstone roof to inversion of high temperature gasification process. At the end of the end of the gasification and gasification simulation results after 5 years, two cases of each 10m as a group for comparative analysis, the same position in the gasification end simulation results of 5 years, the fuel air gap height there will be increased in different degrees. At the same time, two cases of fracture height increment by the fuel air gasification of coal seam thickness effect is most obvious. Through the use of Surfer11 to draw the two case the fuel air fractured range and high contrast map, in the gasification cavity of the preceding paragraph, the height of the fractured zone of gasification increases gradually, and have a maximum value at a distance of 60 m gasification starting position, fracture height of more than 40 m areas are concentrated in the front section of the gasification combustion space area. In the 5 years after the end of the gasification range, the fuel air slit height of more than 35m was pushed forward. After the.5. underground coal gasification mining is completed, will form a huge change in the fuel air area, roof support conditions, the rock stress state and rock strength change, resulting in fracture zone in the surrounding rock, the fracture zone has direct influence on the stability of goaf surrounding rock and gas permeability through long term groundwater. The soaking and leaching of harmful organic pollutants in ash and trace elements will be dissolved in water into the aquifer through the water flowing fractured zone, which caused by underground water pollution. The pollution phenomenon, the cavity grouting treatment recommendations.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)(北京)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD84
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;煤炭地下氣化技術(shù)[J];化工文摘;2000年08期
2 張兆響;應(yīng)當(dāng)大力發(fā)展煤炭地下氣化技術(shù)[J];中國(guó)煤炭;2000年09期
3 楊蘭和,余力;煤炭地下氣化高新技術(shù)產(chǎn)業(yè)化的戰(zhàn)略思考[J];科技導(dǎo)報(bào);2000年12期
4 采編;新礦煤炭地下氣化首開大規(guī)模應(yīng)用先河[J];水力采煤與管道運(yùn)輸;2000年04期
5 耿麥香;論煤炭地下氣化高新技術(shù)的應(yīng)用──山西省晉中市定點(diǎn)試用開發(fā)情況[J];山西能源與節(jié)能;2000年03期
6 張祖培;煤炭地下氣化技術(shù)[J];探礦工程(巖土鉆掘工程);2000年01期
7 初茉,李華民;環(huán)保型煤炭開采與利用技術(shù)——煤炭地下氣化[J];煤礦環(huán)境保護(hù);2000年05期
8 楊蘭和,余力;煤炭地下氣化工業(yè)試驗(yàn)[J];化工學(xué)報(bào);2001年11期
9 江道羆;對(duì)煤炭地下氣化的認(rèn)識(shí)與實(shí)踐[J];煤礦設(shè)計(jì);2001年04期
10 于洪軍,王成;新汶礦區(qū)煤炭地下氣化技術(shù)的成功實(shí)踐與啟示[J];中國(guó)礦業(yè);2001年01期
相關(guān)會(huì)議論文 前10條
1 劉淑琴;梁杰;余力;張尚軍;;低碳清潔煤利用技術(shù):煤炭地下氣化技術(shù)[A];2010中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第二卷)[C];2010年
2 ;煤炭地下氣化技術(shù)[A];第六次全國(guó)煤炭工業(yè)科學(xué)技術(shù)大會(huì)文集[C];2005年
3 王在泉;華安增;王興泉;;煤炭地下氣化高溫煤巖性質(zhì)及巖層控制研究[A];面向國(guó)民經(jīng)濟(jì)可持續(xù)發(fā)展戰(zhàn)略的巖石力學(xué)與巖石工程——中國(guó)巖石力學(xué)與工程學(xué)會(huì)第五次學(xué)術(shù)大會(huì)論文集[C];1998年
4 劉菁華;田鋼;王祝文;;放射性氡氣測(cè)量動(dòng)態(tài)監(jiān)測(cè)煤炭地下氣化燃空區(qū)機(jī)理探討[A];新世紀(jì) 新機(jī)遇 新挑戰(zhàn)——知識(shí)創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(下冊(cè))[C];2001年
5 吳超;劉紅;;煤炭地下氣化鉆孔及其水冷系統(tǒng)的應(yīng)用研究[A];中國(guó)科協(xié)2005年學(xué)術(shù)年會(huì)第20分會(huì)場(chǎng)論文集[C];2005年
6 余力;余學(xué)東;;煤炭地下氣化應(yīng)該為人類的可持續(xù)發(fā)展做貢獻(xiàn)[A];世紀(jì)之交的煤炭科學(xué)技術(shù)學(xué)術(shù)年會(huì)論文集[C];1997年
7 張祖培;徐會(huì)文;劉光華;;雙陽(yáng)煤礦煤炭地下氣化的應(yīng)用研究[A];探礦工程(巖土鉆掘工程)技術(shù)與可持續(xù)發(fā)展研討會(huì)論文集[C];2003年
8 石顯新;閻述;陳明生;梁爽;侯子和;劉寶銀;邱波;;煤炭地下氣化火焰工作面及燃空區(qū)綜合電磁法勘查技術(shù)及其應(yīng)用[A];煤田地質(zhì)與可持續(xù)發(fā)展——中國(guó)煤炭學(xué)會(huì)、中國(guó)地質(zhì)學(xué)會(huì)煤田地質(zhì)專業(yè)委員會(huì)2001年學(xué)術(shù)年會(huì)論文集[C];2001年
9 吳莎莎;樊克恭;;綠色開采實(shí)現(xiàn)模式[A];全國(guó)礦區(qū)環(huán)境綜合治理與災(zāi)害防治技術(shù)研討會(huì)論文集[C];2011年
10 孟絮屹;桂祥友;;煤礦綠色安全生產(chǎn)技術(shù)模式研究[A];全國(guó)金屬礦山采礦新技術(shù)學(xué)術(shù)研討與技術(shù)交流會(huì)論文集[C];2007年
相關(guān)重要報(bào)紙文章 前10條
1 蔣大成;煤炭地下氣化[N];中國(guó)國(guó)土資源報(bào);2001年
2 中國(guó)礦業(yè)大學(xué) 余力 中科院生態(tài)環(huán)境中心 彭安;煤炭地下氣化大有可為[N];人民日?qǐng)?bào);2005年
3 吳月先;煤炭地下氣化開采[N];中國(guó)石油報(bào);2006年
4 國(guó)務(wù)院參事、國(guó)家能源專家咨詢委員會(huì)主任 徐錠明;積極推動(dòng)煤炭地下氣化試驗(yàn) 有序推進(jìn)新型煤化工業(yè)發(fā)展[N];中國(guó)能源報(bào);2009年
5 本報(bào)記者 陳其玨;煤炭地下氣化嶄露頭角[N];上海證券報(bào);2009年
6 李剛;我國(guó)煤炭地下氣化技術(shù) 取得突破性進(jìn)展[N];中國(guó)石化報(bào);2009年
7 張以誠(chéng);煤炭地下氣化:減排的有效之舉[N];中國(guó)礦業(yè)報(bào);2010年
8 記者 阿榮;我盟就東烏旗伊和烏素煤田煤炭地下氣化示范項(xiàng)目與相關(guān)方座談[N];錫林郭勒日?qǐng)?bào);2010年
9 記者 李琮;煤炭地下氣化獲產(chǎn)業(yè)化技術(shù)支撐[N];中國(guó)化工報(bào);2010年
10 齊傳新;加快煤炭地下氣化產(chǎn)業(yè)進(jìn)程[N];廠長(zhǎng)經(jīng)理日?qǐng)?bào);2001年
相關(guān)博士學(xué)位論文 前5條
1 趙明東;煤炭地下氣化覆巖溫度和裂隙的試驗(yàn)與數(shù)值模擬研究[D];中國(guó)礦業(yè)大學(xué)(北京);2017年
2 席建奮;煤炭地下氣化過程特征場(chǎng)演化規(guī)律研究[D];中國(guó)礦業(yè)大學(xué)(北京);2016年
3 張彬;煤炭地下氣化調(diào)控機(jī)理與計(jì)算機(jī)仿真技術(shù)研究[D];遼寧工程技術(shù)大學(xué);2004年
4 王建華;窄條帶氣化工藝適應(yīng)性綜合評(píng)價(jià)與覆巖變形規(guī)律研究[D];中國(guó)礦業(yè)大學(xué);2017年
5 崔勇;煤層逆向燃燒氣化機(jī)理及工藝過程模擬研究[D];中國(guó)礦業(yè)大學(xué)(北京);2014年
相關(guān)碩士學(xué)位論文 前9條
1 賀盛;煤炭地下氣化發(fā)電技術(shù)經(jīng)濟(jì)分析[D];中國(guó)礦業(yè)大學(xué);2015年
2 李慶堂;煤炭地下氣化數(shù)據(jù)中心設(shè)計(jì)[D];電子科技大學(xué);2014年
3 葉云娜;煤炭地下氣化對(duì)地下水污染的研究[D];河南理工大學(xué);2015年
4 劉建明;煤炭地下氣化燃空區(qū)擴(kuò)展及頂板穩(wěn)定性研究[D];中國(guó)礦業(yè)大學(xué);2014年
5 成閃閃;超臨界二氧化碳改造建材和在煤炭地下氣化填埋中應(yīng)用的研究[D];哈爾濱工業(yè)大學(xué);2011年
6 劉麗梅;煤炭地下氣化項(xiàng)目現(xiàn)場(chǎng)試驗(yàn)階段風(fēng)險(xiǎn)管理研究[D];天津大學(xué);2008年
7 李明敏;褐煤熱解滲透及其微觀結(jié)構(gòu)變化的研究[D];太原理工大學(xué);2012年
8 徐云龍;地下氣化過程中煤層頂板巖石滲透特性研究[D];太原理工大學(xué);2014年
9 李鄭鑫;膨脹石墨的制備及其對(duì)煤炭地下氣化污染地下水的凈化研究[D];河南理工大學(xué);2016年
,本文編號(hào):1584578
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1584578.html