礦漿管道輸送工程試驗(yàn)系統(tǒng)設(shè)計(jì)與彎管特性研究
本文選題:礦漿管道輸送 切入點(diǎn):試驗(yàn)系統(tǒng) 出處:《昆明理工大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:長距離礦漿管道輸送方式具有輸送能力大、耕地占用少、不受氣候條件限制、節(jié)能減排等許多優(yōu)點(diǎn)。隨著對(duì)偏遠(yuǎn)地區(qū)礦產(chǎn)資源需求的增加,長距離礦漿管道輸送的應(yīng)用日益廣泛。然而,礦漿管道輸送過程中經(jīng)常可能出現(xiàn)淤積、堵塞、對(duì)內(nèi)管壁產(chǎn)生嚴(yán)重磨損等問題。作為管道輸送重要構(gòu)件——彎管,其結(jié)構(gòu)相對(duì)直管段更為復(fù)雜,在漿體流經(jīng)彎管時(shí)更易出現(xiàn)以上問題。因此,對(duì)漿體管道輸送及彎管特性進(jìn)行研究具有十分重要的意義。由于固液兩相流的復(fù)雜性、理論研究的相對(duì)局限性使得漿體管道輸送過程中很多問題還得不到很好的解決,管道漿體輸送的很多問題需要借助試驗(yàn)的方法來研究,為管道水力輸送的實(shí)際工業(yè)應(yīng)用提供支持。因此,漿體管道輸送工程試驗(yàn)系統(tǒng)的設(shè)計(jì)顯得尤為重要。論文的主要研究工作如下:(1)分析礦漿管道輸送工藝流程及部分重要參數(shù),研究管道輸送特性。設(shè)計(jì)并建設(shè)一套綜合性多功能的室內(nèi)管道輸送試驗(yàn)平臺(tái)。對(duì)試驗(yàn)平臺(tái)的系統(tǒng)結(jié)構(gòu)測試方法和主要功能進(jìn)行著重介紹,并對(duì)試驗(yàn)平臺(tái)礦漿特性進(jìn)行實(shí)驗(yàn)分析。初步確定了工藝優(yōu)化設(shè)計(jì)所采用的計(jì)算公式,并對(duì)主要固體物料,漿體流變特性進(jìn)行了分析研究。(2)結(jié)合國內(nèi)某著名管道公司實(shí)時(shí)運(yùn)行數(shù)據(jù),對(duì)壓差關(guān)系式法進(jìn)行驗(yàn)證,通過兩組實(shí)驗(yàn):壓差與流量的關(guān)系、壓差關(guān)系式與流量的關(guān)系進(jìn)行對(duì)比,對(duì)原有公式進(jìn)行修正。對(duì)彎管前后的直管段是否對(duì)實(shí)驗(yàn)結(jié)果有影響做了驗(yàn)證說明,試驗(yàn)中采用兩條管徑不同的彎管。通過實(shí)驗(yàn)來研究彎管的結(jié)構(gòu)參數(shù)在一定范圍內(nèi),彎管流量系數(shù)與彎管材質(zhì)、大小的關(guān)系。(3)針對(duì)Metzner-Reed模型的分析,結(jié)合昆明理工大學(xué)礦物管道輸送工程技術(shù)研究中心129實(shí)驗(yàn)室這一小型漿體管道輸送試驗(yàn)系統(tǒng)初步研究了鐵精礦漿體流經(jīng)水平彎管的局部阻力特性,具體分析了不同曲率半徑Re對(duì)彎管的局部阻力系數(shù)的影響,漿體流速、體積濃度等的變化對(duì)彎管阻力特性的影響。本文對(duì)漿體管道輸送特性進(jìn)行理論分析和實(shí)際驗(yàn)證,設(shè)計(jì)并建立漿體試驗(yàn)工程系統(tǒng),確定輸送方案及相關(guān)參數(shù),具有較高的現(xiàn)實(shí)意義和應(yīng)用價(jià)值。
[Abstract]:Long distance slurry pipeline transportation has many advantages, such as large transportation capacity, less occupation of cultivated land, no restriction of climate conditions, energy saving and emission reduction, etc. With the increasing demand for mineral resources in remote areas, The application of long distance slurry pipeline transportation is becoming more and more extensive. However, sludge, blockage and serious wear on the inner pipe wall may often occur in the process of slurry pipeline transportation. Compared with the straight pipe section, the structure of the pipe is more complex, and the above problems are more likely to occur when the slurry flows through the curved pipe. Therefore, it is of great significance to study the transport of slurry pipe and the characteristics of the curved pipe. Because of the complexity of solid-liquid two-phase flow, Due to the relative limitations of theoretical research, many problems in slurry pipeline transportation can not be solved well, and many problems in pipeline slurry transportation need to be studied by means of experimental methods. This paper provides support for practical industrial application of pipeline hydraulic transportation. Therefore, the design of slurry pipeline transportation engineering test system is particularly important. The main research work of this paper is as follows: 1) analyzing the process flow and some important parameters of slurry pipeline transportation. This paper studies the characteristics of pipeline transportation, designs and builds a set of comprehensive and multifunctional test platform for indoor pipeline transportation, and introduces emphatically the test methods and main functions of the system structure of the test platform. The characteristics of the slurry on the test platform are analyzed experimentally. The calculation formulas used in the process optimization design are preliminarily determined, and the main solid materials are also studied. The rheological characteristics of slurry are analyzed and studied. (2) based on the real-time operation data of a famous pipeline company in China, the pressure differential relation method is verified. The relationship between pressure difference and flow rate, the relationship between pressure difference and flow rate is compared through two groups of experiments: the relationship between pressure difference and flow rate, the relationship between pressure difference and flow rate, and the relationship between pressure difference and flow rate. The original formula is revised. Whether the straight section before and after the bend has an effect on the experimental results is verified. In the experiment, two pipes with different diameters are used. The structural parameters of the elbow are studied in a certain range. The relationship between the flow coefficient and the material and size of the bends. (3) the analysis of the Metzner-Reed model, The local resistance characteristics of iron concentrate slurry flowing through horizontal bend pipe have been preliminarily studied with 129 laboratory of Kunming University of Technology University of Technology for mineral pipeline transportation engineering, which is a small slurry pipeline transportation test system. The influence of different curvature radius re on the local resistance coefficient of curved pipe, the influence of slurry velocity and volume concentration on the resistance characteristic of bent pipe is analyzed in detail, and the theoretical analysis and practical verification of slurry pipeline transportation characteristic are carried out in this paper. It is of great practical significance and application value to design and establish the slurry test engineering system and determine the transportation scheme and related parameters.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TD50
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張樹琦;金克銘;;巴西戈亞斯福梯爾磷酸鹽礦漿管道的設(shè)計(jì)[J];國外采礦技術(shù)快報(bào);1988年01期
2 李紅星,朱培新;甕福磷精礦漿管道[J];化工礦山技術(shù);1997年01期
3 金楓;;對(duì)長輸?shù)V漿管道水壓試驗(yàn)技術(shù)研究的實(shí)踐[J];經(jīng)營管理者;2010年20期
4 楊朝虹;曾榮杰;;新型調(diào)節(jié)式礦漿管道取樣機(jī)[J];裝備制造技術(shù);2010年11期
5 薛利生;朱宇;梁繼云;;包鋼白云西礦礦漿管道工程新技術(shù)應(yīng)用[J];包鋼科技;2011年02期
6 梁充光;中國第一條長距離高濃度鐵礦漿管道工程建設(shè)與實(shí)踐[J];中國礦業(yè);1999年02期
7 賈立斌;李鳳春;;包鋼礦漿管道清管、測徑、壓力試驗(yàn)施工技術(shù)[J];包鋼科技;2011年02期
8 董荔葦;;巴新瑞木鎳鈷項(xiàng)目礦漿管道施工技術(shù)[J];山西冶金;2011年02期
9 趙國慶;;低碳經(jīng)濟(jì)在包鋼礦漿管道工程中的應(yīng)用[J];包鋼科技;2010年06期
10 壽國華;甄云軍;梁敏;;甕福磷礦精礦漿管道輸送能力最大化的研究和實(shí)施[J];化工礦物與加工;2006年08期
相關(guān)會(huì)議論文 前1條
1 遲慶雷;趙建軍;曾榮杰;;BGPS型礦漿管道取樣器的研制[A];復(fù)雜難處理礦石選礦技術(shù)——全國選礦學(xué)術(shù)會(huì)議論文集[C];2009年
相關(guān)重要報(bào)紙文章 前3條
1 本報(bào)記者 白茂槐;邊遠(yuǎn)資源利用的新“福星”[N];中國冶金報(bào);2007年
2 袁輝翔;設(shè)計(jì)新航線省錢34萬元[N];中國水運(yùn)報(bào);2008年
3 本報(bào)記者 王平;數(shù)字化礦山助力包鋼降本增效[N];中國冶金報(bào);2012年
相關(guān)博士學(xué)位論文 前2條
1 何成;長距離礦漿管道輸送過程檢測與控制關(guān)鍵技術(shù)的研究[D];湖南大學(xué);2014年
2 譚俊清;礦漿管道極限承載能力和壽命預(yù)測研究[D];西安建筑科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前2條
1 肖克;礦漿管道輸送工程試驗(yàn)系統(tǒng)設(shè)計(jì)與彎管特性研究[D];昆明理工大學(xué);2016年
2 王春燕;A礦礦漿管道輸送技術(shù)及經(jīng)濟(jì)可行性研究[D];電子科技大學(xué);2011年
,本文編號(hào):1583400
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1583400.html