下運(yùn)帶式輸送機(jī)制動(dòng)阻尼托輥的研究
本文選題:下運(yùn)帶式輸送機(jī) 切入點(diǎn):制動(dòng)阻尼托輥 出處:《太原理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:帶式輸送機(jī)在原煤輸送、存儲(chǔ)、轉(zhuǎn)運(yùn)的作業(yè)流程中發(fā)揮著巨大的作用。已探明我國(guó)煤炭?jī)?chǔ)量中,煤的賦存以傾斜和緩傾斜為主。因此,在井下煤炭的開采及運(yùn)輸中不可避免的要用到下運(yùn)帶式輸送機(jī)。下運(yùn)帶式輸送機(jī)運(yùn)行過程中,當(dāng)物料在重力作用下產(chǎn)生的下滑分力大于其運(yùn)行阻力時(shí),驅(qū)動(dòng)電機(jī)處于發(fā)電運(yùn)行工況,產(chǎn)生的反力矩來與物料的下滑分力相平衡;當(dāng)下運(yùn)帶式輸送機(jī)需要停機(jī)制動(dòng)時(shí),電動(dòng)機(jī)失電,產(chǎn)生的反力矩消失,物料在其下滑分力和慣性力共同作用下產(chǎn)生的向下運(yùn)動(dòng)規(guī)律完全取決于制動(dòng)系統(tǒng)與輸送帶、自動(dòng)張緊系統(tǒng)的動(dòng)態(tài)耦合。由此可見,制動(dòng)系統(tǒng)便成為該類帶式輸送機(jī)安全運(yùn)行的關(guān)鍵環(huán)節(jié)。本文結(jié)合下運(yùn)帶式輸送機(jī)在制動(dòng)方面目前存在的問題,在綜合考慮各種因素的基礎(chǔ)上,為了實(shí)現(xiàn)輸送機(jī)的平穩(wěn)安全制動(dòng),,設(shè)計(jì)了下運(yùn)帶式輸送機(jī)制動(dòng)阻尼托輥,用于下運(yùn)帶式輸送機(jī)的速度控制及停車制動(dòng)。 本文在研究粘彈性帶在剛性托輥表面的運(yùn)動(dòng)及形變規(guī)律的基礎(chǔ)上,對(duì)輸送帶壓陷阻力進(jìn)行了分析,并得出了帶速及托輥直徑等因素對(duì)輸送帶壓陷阻力的影響曲線。結(jié)合該研究結(jié)果,并在分析了輸送機(jī)現(xiàn)場(chǎng)工況及制動(dòng)設(shè)備設(shè)計(jì)目標(biāo)的基礎(chǔ)上完成了下運(yùn)帶式輸送機(jī)制動(dòng)阻尼托輥的布置方案設(shè)計(jì)及制動(dòng)托輥單體結(jié)構(gòu)三維模型。在對(duì)輸送帶與托輥的相互作用進(jìn)行合理簡(jiǎn)化的基礎(chǔ)上建立了粘彈性帶-剛性托輥系統(tǒng)模型,通過workbench動(dòng)態(tài)仿真模塊分析了輸送帶在托輥制動(dòng)作用力下的應(yīng)變及形變狀態(tài),并運(yùn)用Response Surface Optimization模塊分析了帶速、托輥直徑、輸送帶正壓力及托輥旋轉(zhuǎn)摩擦系數(shù)等因素對(duì)輸送帶最大應(yīng)變及形變的影響靈敏度。通過優(yōu)化分析,得出最大應(yīng)變時(shí)托輥直徑及托輥軸與托輥摩擦系數(shù)的合理范圍。 運(yùn)用RecurDyn多體動(dòng)力學(xué)軟件創(chuàng)建了下運(yùn)帶式輸送機(jī)虛擬樣機(jī)模型,并根據(jù)此虛擬樣機(jī)分別對(duì)傳統(tǒng)制動(dòng)方式和制動(dòng)托輥制動(dòng)兩種制動(dòng)方式進(jìn)行制動(dòng)效能和輸送帶張力的仿真對(duì)比研究,結(jié)合仿真分析結(jié)果及張力理論計(jì)算研究,得出制動(dòng)托輥布置的最優(yōu)方案。
[Abstract]:Belt conveyors play an important role in the operation flow of raw coal transportation, storage and transportation. It has been proved that in China's coal reserves, the occurrence of coal is mainly inclined and gently inclined. In the mining and transportation of underground coal, it is inevitable to use the downward belt conveyor. During the operation of the down-hauling belt conveyor, when the sliding force produced by the material under the action of gravity is greater than its running resistance, The driving motor is in the working condition of power generation, and the reverse torque produced is balanced with the sliding force of the material. When the current belt conveyor needs to stop and brake, the motor loses power and the reverse torque disappears. The downward motion of the material under the combined action of its sliding force and inertial force depends entirely on the dynamic coupling of the braking system with the conveyor belt and the automatic tensioning system. The braking system has become the key link in the safe operation of this kind of belt conveyors. In this paper, combined with the problems existing in the braking of the lower belt conveyors, and on the basis of comprehensive consideration of various factors, in order to realize the smooth and safe braking of the conveyors, The brake damping roller of belt conveyor is designed, which is used for speed control and stop braking of down belt conveyor. Based on the study of the motion and deformation of viscoelastic belt on the surface of rigid roller, the pressure and subsidence resistance of conveyer belt is analyzed in this paper. The influence curves of belt speed and roller diameter on the pressure drop resistance of conveyor belt are obtained. The layout scheme of brake damping roller and the three dimensional model of single structure of brake roller are completed on the basis of analyzing the working condition of conveyer and the design target of brake equipment. On the basis of reasonable simplification of the interaction, a model of viscoelastic belt rigid roller system is established. The strain and deformation state of conveyor belt under brake force is analyzed by workbench dynamic simulation module, and the speed and diameter of roller are analyzed by Response Surface Optimization module. The influence of positive pressure of conveyor belt and friction coefficient of roller rotation on the sensitivity of maximum strain and deformation of conveyer belt is studied. Through optimization analysis, the reasonable range of roller diameter and friction coefficient between roller shaft and roller is obtained. The virtual prototype model of down-moving belt conveyor is established by using RecurDyn multi-body dynamics software. According to the virtual prototype, the braking efficiency and belt tension of the traditional braking mode and the brake roller braking mode are compared, and the simulation analysis results and the tension theory calculation are combined. The optimal scheme of brake roller arrangement is obtained.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TD528.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙玉慧;劉春光;臧克茂;;基于Matlab與RecurDyn的電傳動(dòng)履帶車輛的聯(lián)合仿真[J];車輛與動(dòng)力技術(shù);2007年03期
2 宋偉剛,鄧永勝,郭立新;帶式輸送機(jī)停機(jī)動(dòng)態(tài)過程的計(jì)算機(jī)仿真[J];東北大學(xué)學(xué)報(bào);2002年10期
3 宋偉剛,戰(zhàn)欣,王元元;大型帶式輸送機(jī)驅(qū)動(dòng)裝置的比較研究[J];工程設(shè)計(jì)學(xué)報(bào);2004年06期
4 董立立;趙益萍;梁林泉;朱煜;段廣洪;;機(jī)械優(yōu)化設(shè)計(jì)理論方法研究綜述[J];機(jī)床與液壓;2010年15期
5 王繁生;侯友夫;;剛性滾筒與粘彈性基礎(chǔ)接觸問題分析[J];機(jī)械設(shè)計(jì);2010年12期
6 王鵬_g;郭永存;胡坤;;帶式輸送機(jī)虛擬樣機(jī)啟動(dòng)工況的研究[J];礦山機(jī)械;2010年09期
7 王繁生;侯友夫;;帶式輸送機(jī)壓陷阻力研究[J];礦山機(jī)械;2010年17期
8 陳恒新;;帶式輸送機(jī)托輥密封設(shè)計(jì)[J];礦山機(jī)械;2010年17期
9 王繁生;侯友夫;蔣紅旗;;帶式輸送機(jī)壓陷變形仿真研究[J];礦山機(jī)械;2011年11期
10 毛君;楊彩紅;;帶式輸送機(jī)啟動(dòng)阻力理論分析[J];礦業(yè)研究與開發(fā);2009年05期
相關(guān)博士學(xué)位論文 前2條
1 王繁生;帶式輸送機(jī)柔性多體動(dòng)力學(xué)分析方法研究[D];中國(guó)礦業(yè)大學(xué);2010年
2 董大仟;大型帶式輸送機(jī)動(dòng)態(tài)特性研究及其應(yīng)用[D];華北電力大學(xué)(北京);2008年
本文編號(hào):1560225
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1560225.html