宣東二礦瓦斯優(yōu)質(zhì)通道構(gòu)建方法研究
本文關(guān)鍵詞:宣東二礦瓦斯優(yōu)質(zhì)通道構(gòu)建方法研究 出處:《中國(guó)礦業(yè)大學(xué)(北京)》2016年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 抽采鉆孔 蝶形塑性區(qū) 瓦斯優(yōu)質(zhì)通道 非均勻應(yīng)力
【摘要】:瓦斯作為煤炭主要的伴生資源,過(guò)去一直是威脅煤炭安全生產(chǎn)的重要因素之一,也是被嚴(yán)重浪費(fèi)和低估的一種資源。隨著綠色集約化煤炭開采越來(lái)越被關(guān)注,煤與瓦斯共采勢(shì)在必行。本文以宣東二礦為工程背景,采用理論分析,數(shù)值模擬,現(xiàn)場(chǎng)監(jiān)測(cè)等方法和手段,針對(duì)煤與瓦斯共采理論及技術(shù)這一熱點(diǎn)研究問(wèn)題,研究了鉆孔圍巖“蝶形塑性區(qū)”形成的力學(xué)機(jī)制,以鉆孔圍巖“蝶形塑性區(qū)”形成的力學(xué)機(jī)制為基礎(chǔ),研究了瓦斯優(yōu)質(zhì)通道重構(gòu)的關(guān)鍵采煤干預(yù)方法和關(guān)鍵人工通道的干預(yù)方法,并對(duì)宣東二礦302工作面瓦斯抽采濃度進(jìn)行了全過(guò)程監(jiān)測(cè),研究了瓦斯?jié)舛扰c工作面距離鉆場(chǎng)的關(guān)系,驗(yàn)證了鉆孔圍巖“蝶形塑性區(qū)”的合理性。獲得了以下主要研究成果:(1)以彈塑性力學(xué)中的圓孔問(wèn)題為基礎(chǔ),結(jié)合塑性力學(xué)的偏應(yīng)力理論,建立了鉆孔圍巖“蝶形塑性區(qū)”理論模型,揭示了鉆孔圍巖“蝶形塑性區(qū)”形成的力學(xué)機(jī)制和分布規(guī)律,為構(gòu)建瓦斯優(yōu)質(zhì)通道提供了理論依據(jù);(2)以鉆孔圍巖“蝶形塑性區(qū)”理論為基礎(chǔ),研究了采礦活動(dòng)形成的應(yīng)力環(huán)境對(duì)鉆孔圍巖蝶形塑性區(qū)的影響規(guī)律,提出了瓦斯優(yōu)質(zhì)通道的概念,建立了通過(guò)合理規(guī)劃采礦活動(dòng)中的工作面長(zhǎng)度,工作面高度和工作面煤柱尺寸等參數(shù)構(gòu)建瓦斯優(yōu)質(zhì)通的關(guān)鍵采煤干預(yù)方法;(3)以宣東礦瓦斯抽采活動(dòng)為例,對(duì)比分析了該礦瓦斯抽采鉆孔在經(jīng)歷采動(dòng)影響和未經(jīng)歷采動(dòng)影響下的瓦斯?jié)舛纫?guī)律,驗(yàn)證了基于鉆孔圍巖“蝶形塑性區(qū)”理論提出的瓦斯優(yōu)質(zhì)通道構(gòu)建方法的合理性。以彈塑性力學(xué)中的圓孔問(wèn)題為基礎(chǔ),結(jié)合塑性力學(xué)的偏應(yīng)力理論,建立了鉆孔圍巖“蝶形塑性區(qū)”理論模型,以此為基礎(chǔ),揭示了鉆孔圍巖“蝶形塑性區(qū)”形成的力學(xué)機(jī)制和分布規(guī)律,為構(gòu)建瓦斯優(yōu)質(zhì)通道提供了理論依據(jù),得到了如下主要結(jié)論:(1)建立了鉆孔圍巖理論力學(xué)模型,通過(guò)分析力學(xué)模型,得到了鉆孔圍巖在均勻應(yīng)力場(chǎng)和非均勻引力場(chǎng)下偏應(yīng)力解;得到了鉆孔圍巖偏應(yīng)力場(chǎng)的分布規(guī)律,即巷道埋深和最大與最小主偏應(yīng)力呈現(xiàn)正比例關(guān)系,圍巖位置極坐標(biāo)(r,θ)和最大與最小主偏應(yīng)力分別呈現(xiàn)橫“八”字狀和橫“陀螺”狀分布;(2)得到了鉆孔圍巖塑性區(qū)半徑下非等壓應(yīng)力場(chǎng)中的計(jì)算公式,揭示了在非等壓應(yīng)力場(chǎng)中,鉆孔圍巖“蝶形塑性區(qū)”分布規(guī)律;(3)分析了側(cè)壓系數(shù)λ、內(nèi)聚力c、內(nèi)摩擦角φ和鉆孔半徑r對(duì)鉆孔圍壓塑性區(qū)的分布的影響。其中當(dāng)側(cè)壓系數(shù)λ≠1時(shí),鉆孔圍巖塑性區(qū)均呈現(xiàn)“蝶”狀分布,并且λ/1(當(dāng)λ1時(shí))或者1/λ(當(dāng)λ1時(shí))的比值越大,鉆孔圍巖塑性區(qū)的“蝶”狀分布越明顯;內(nèi)聚力c越小鉆孔圍巖塑性區(qū)的范圍越大,并且其“蝶”狀分布越明顯;內(nèi)摩擦角φ越小鉆孔圍巖塑性區(qū)的范圍越大,并且其“蝶”狀分布越明顯;鉆孔半徑越大鉆孔圍巖塑性區(qū)的范圍越大,并且其“蝶”狀分布越明顯。以鉆孔圍巖“蝶形塑性區(qū)”理論為基礎(chǔ),研究了采礦活動(dòng)形成的應(yīng)力環(huán)境對(duì)鉆孔圍巖蝶形塑性區(qū)的影響規(guī)律,提出了瓦斯優(yōu)質(zhì)通道的概念,建立了通過(guò)合理規(guī)劃采礦活動(dòng)中的工作面長(zhǎng)度,工作面高度和工作面煤柱等參數(shù)構(gòu)建瓦斯優(yōu)質(zhì)通的關(guān)鍵采煤干預(yù)方法,數(shù)值模擬結(jié)果表明:(1)在工作面長(zhǎng)度小于200m或大于200m時(shí),高應(yīng)力比值帶形狀為馬鞍形或駝峰形,此類高應(yīng)力比值帶不利于瓦斯抽采鉆孔的布置。當(dāng)工作面長(zhǎng)度在200m時(shí),高應(yīng)力比值帶為水平橢圓狀分布,有利于瓦斯鉆孔的布置,瓦斯鉆孔可以大部分布置在高應(yīng)力比值帶內(nèi)。(2)在煤柱下方底板巖層并未出現(xiàn)明顯的應(yīng)力卸載區(qū)域,基本不受開采的影響,不能形成鉆孔圍巖出現(xiàn)蝶形塑性區(qū)的應(yīng)力環(huán)境,不利于鉆孔圍巖塑性區(qū)的擴(kuò)展,因此瓦斯抽采鉆孔應(yīng)盡量避免布置于煤柱底板區(qū)域。(3)高應(yīng)力比值帶的形態(tài)不會(huì)隨著工作面采高變化而發(fā)生較大變化,高應(yīng)力比值帶的最大比值并不會(huì)隨著采高的變化而發(fā)生明顯的改變。同時(shí),高應(yīng)力比值帶的位置不隨采高發(fā)生較大的變化。因此,采高不會(huì)對(duì)高應(yīng)力比值帶的大小和分布范圍產(chǎn)生較大的影響。(4)工作面長(zhǎng)度和工作面煤柱尺寸相比于工作面采高對(duì)高應(yīng)力比值帶的影響程度要大。因此,對(duì)于通過(guò)規(guī)劃采煤參數(shù)以達(dá)到構(gòu)建瓦斯優(yōu)質(zhì)通時(shí),可主要考慮從規(guī)劃工作面長(zhǎng)度和工作面煤柱尺寸兩方面入手。瓦斯優(yōu)質(zhì)通道重構(gòu)方法包括關(guān)鍵采煤方法干預(yù)方法和關(guān)鍵人工通道的干預(yù)方法。關(guān)鍵采煤干預(yù)方法通過(guò)合理規(guī)劃采礦工程活動(dòng),構(gòu)建了有利于構(gòu)建瓦斯優(yōu)質(zhì)通道的應(yīng)力環(huán)境,關(guān)鍵人工通道的干預(yù)方法主要包括抽采鉆孔布置層位和抽采鉆孔布置間距。利用鉆孔圍巖塑性區(qū)計(jì)算方法,探究了鉆孔布置層位的確定方法及合理的鉆孔間距,研究結(jié)果表明:(1)在高應(yīng)力比值帶內(nèi),不同巖性條件下鉆孔圍巖塑性區(qū)均呈現(xiàn)蝶形形態(tài)。當(dāng)其他參數(shù)條件一定時(shí),鉆孔圍巖塑性區(qū)邊界最大半徑與巖石黏聚力成負(fù)相關(guān),在巖石黏聚力增加到一定值后,最大半徑變化趨于緩慢;當(dāng)其他參數(shù)條件一定時(shí),鉆孔圍巖塑性區(qū)邊界最大半徑與巖石內(nèi)摩擦角成負(fù)相關(guān),在巖石內(nèi)摩擦角增加到一定值后,最大半徑變化趨于緩慢。(2)鉆孔合理層位選擇分兩種情況:當(dāng)下開采煤層煤質(zhì)較硬時(shí),鉆孔布置在煤層中;當(dāng)下開采煤層煤質(zhì)較軟時(shí),鉆孔布置在鄰近下開采煤層的穩(wěn)定巖層中。(3)鉆孔間距依據(jù)鉆孔圍巖塑性區(qū)邊界最大半徑及所對(duì)應(yīng)的方位角確定。鉆孔布置在煤層中時(shí),鉆孔間距為:maxH?2Rcos?;鉆孔布置在鄰近穩(wěn)定巖層時(shí),鉆孔間距為:maxH?2(h?d)/tan?。在研究鉆孔圍巖“蝶形塑性區(qū)”理論和瓦斯優(yōu)質(zhì)通道構(gòu)建方法的基礎(chǔ)上,以宣東礦瓦斯抽采活動(dòng)為例,介紹了該礦的瓦斯抽采現(xiàn)狀,對(duì)比分析了該礦瓦斯抽采鉆孔在經(jīng)歷采動(dòng)影響和未經(jīng)歷采動(dòng)影響下的瓦斯?jié)舛纫?guī)律,驗(yàn)證了基于鉆孔圍巖“蝶形塑性區(qū)”理論提出的瓦斯優(yōu)質(zhì)通道構(gòu)建方法的合理性,現(xiàn)場(chǎng)瓦斯?jié)舛缺O(jiān)測(cè)結(jié)果表明:(1)通過(guò)研究分析302工作面瓦斯抽采濃度發(fā)現(xiàn):瓦斯?jié)舛扰c工作面距離鉆場(chǎng)的距離基本呈現(xiàn)出反比狀態(tài),即工作面距離鉆場(chǎng)越遠(yuǎn),瓦斯?jié)舛仍叫?工作面距離鉆場(chǎng)越近,瓦斯?jié)舛仍酱蟆?2)瓦斯?jié)舛扰c工作面距離鉆場(chǎng)的距離的關(guān)系驗(yàn)證了鉆孔圍巖“蝶形塑性區(qū)”理論的合理性。工作面距離鉆場(chǎng)較遠(yuǎn)時(shí),鉆孔處于原巖應(yīng)力區(qū),鉆孔圍巖周圍幾乎不產(chǎn)生塑性區(qū),導(dǎo)致各個(gè)鉆孔的瓦斯?jié)舛容^小;當(dāng)工作面回采逐漸接近鉆場(chǎng)時(shí),抽采鉆孔處于采動(dòng)應(yīng)力場(chǎng)形成的采動(dòng)加載應(yīng)力環(huán)境,鉆孔圍巖產(chǎn)生蝶形塑性區(qū),有利于瓦斯的抽采,瓦斯?jié)舛戎饾u增大。本文研究得到的鉆孔圍巖“蝶形塑性區(qū)”理論,及在此基礎(chǔ)之上提出的瓦斯優(yōu)質(zhì)通道重構(gòu)的關(guān)鍵采煤干預(yù)方法和關(guān)鍵人工通道干預(yù)方法,為瓦斯抽采及煤與瓦斯共采提供了一種新思路和新方法。
[Abstract]:As one of the main associated resources of coal, gas has been one of the important factors that threaten the safety of coal production, and it is also a resource that is seriously wasted and underestimated. As the green intensive coal mining is becoming more and more concerned, coal and gas CO production is imperative. In this paper, Xuandong two mine as engineering background, using theoretical analysis, numerical simulation, field monitoring methods and means for coal and gas extraction a hot research problems in the theory and technology, the mechanical mechanism of the surrounding rock "butterfly plastic zone" formation, mechanism of formation in drilling surrounding rock "butterfly the plastic zone" as the foundation, study the intervention methods of gas quality channel reconstruction key mining intervention methods and key artificial channel, and the gas of two Xuandong mine 302 working face extraction concentration of the whole process of monitoring of gas concentration and the working relationship between distance drilling field, verify the rationality of drilling rock "butterfly plastic zone". The main research achievements are as follows: (1) the problem of elastic circular mechanics as the basis, combined with the theory of partial stress should be plastic mechanics, established the "butterfly drilling surrounding rock plastic zone" theory model, reveals the mechanics mechanism of the formation and distribution of surrounding rock of "butterfly plastic zone" that provides a theoretical basis for the construction of high quality gas channel; (2) the surrounding rock "butterfly plastic zone" as the theoretical basis, research the mining activities form stress environment influence law of plastic zone of surrounding rock of butterfly, put forward the concept of high quality gas channel, established by reasonable working face length planning in mining, mining key intervention methods work surface height and working face coal pillar size and other parameters to construct gas quality links; (3) in Xuandong mine as an example, a comparative analysis of the mine gas drainage drilling experience in mining influence and not The rule of gas concentration under the influence of mining has verified the rationality of the construction method of gas quality channel based on the "butterfly plastic zone" theory of borehole surrounding rock. The plastic hole problem in mechanics as the basis, combined with the theory of partial stress should be plastic mechanics, established the "butterfly drilling surrounding rock plastic zone" theory model, on this basis, reveals the mechanics mechanism of the formation and distribution of surrounding rock of "butterfly plastic zone", provides a theoretical basis for the construction of gas channel quality, the main conclusions are as follows: (1) established the theory of rock drilling model, through the analysis of the mechanical model, the surrounding rock in uniform stress field and non-uniform gravitational field under deviatoric stress solution; the drilling has partial rock stress field distribution, the depth of roadways and the maximum and minimum principal deviator stress presented in direct proportion to the relationship between rock position of polar coordinates (R, 0) and the maximum and minimum principal stress presents partial transverse "eight" with the word "top" and cross shaped distribution respectively; (2) the drilling rock plastic zone radius under field should be non isobaric force The calculation formula reveals the distribution rule of "butterfly plastic zone" in borehole surrounding rock in the non isobaric stress field. (3) the influence of lateral pressure coefficient lambda, cohesive force C, internal friction angle and radius r on the distribution of plastic zone in borehole surrounding pressure is analyzed. When the lateral pressure coefficient lambda = 1, drilling rock plastic zone showed a "Butterfly" shaped distribution, and a /1 (when 1) or 1/ (when lambda lambda 1) the ratio is higher, the drilling rock plastic zone "Butterfly" shaped distribution is more obvious; the smaller the C cohesion surrounding rock plastic zone is larger, and the "Butterfly" shaped distribution is more obvious; the internal friction angle is smaller in surrounding rock plastic range is larger, and the "Butterfly" shaped distribution is more obvious; the larger the radius of borehole drilling surrounding rock plastic zone is larger, and the butterfly "" distribution is more obvious. The surrounding rock of "butterfly plastic zone" as the theoretical basis, research the mining activities form stress environment influence law of plastic zone of surrounding rock of butterfly, put forward the concept of high quality gas channel, set up the length of the working face through reasonable planning of mining activities in the key mining work surface height and intervention methods the working face of coal pillar construction parameters such as gas quality through the numerical simulation results show that: (1) in the working face length is less than 200m or greater than 200m, high stress ratio with shape of saddle or hump shaped, such high stress ratio is not conducive to the gas drainage borehole layout. When the length of the working face is 200m, the ratio of the high stress ratio is horizontal elliptical, which is favorable for the layout of gas drilling, and the gas drilling can be mostly arranged in the high stress ratio zone. (2) did not show significant stress unloading region in the coal pillar floor strata under the influence of mining, no, can not form a butterfly shaped plastic zone stress environment of surrounding rock, is not conducive to the expansion of surrounding rock plastic zone, so the gas drainage drilling should avoid placed on the coal pillar floor area. (3) the shape of high stress ratio does not change greatly along with the change of mining height. The maximum ratio of high stress ratio does not change obviously with the change of mining height. At the same time, the position of the high stress ratio zone does not vary greatly with the mining height. Therefore, the height of the high stress ratio will not have a great influence on the size and distribution of the high stress ratio zone. (4) the impact of the length of the working face and the size of the working face coal pillar on the high stress ratio zone is larger than the height of the working face. Therefore, for planning the mining parameters to achieve gas quality, we can mainly consider two aspects: the length of the planning face and the pillar size of the working face. The method of reconstruction of gas high quality channel includes the intervention method of key mining method and the intervention method of key artificial channel. The key coal mining intervention method, through reasonable planning of mining engineering activities, has constructed a stress environment conducive to the construction of gas quality passageway. The key artificial channel intervention methods mainly include the layout of drainage holes and the spacing between drainage holes.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)(北京)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TD712.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬念杰;李季;趙希棟;趙志強(qiáng);劉洪濤;賈后省;;深部煤與瓦斯共采中的優(yōu)質(zhì)瓦斯通道及其構(gòu)建方法[J];煤炭學(xué)報(bào);2015年04期
2 馬念杰;李季;趙志強(qiáng);;圓形巷道圍巖偏應(yīng)力場(chǎng)及塑性區(qū)分布規(guī)律研究[J];中國(guó)礦業(yè)大學(xué)學(xué)報(bào);2015年02期
3 王宏圖;黃光利;袁志剛;舒才;胡國(guó)忠;;急傾斜上保護(hù)層開采瓦斯越流固-氣耦合模型及保護(hù)范圍[J];巖土力學(xué);2014年05期
4 張小波;趙光明;孟祥瑞;;考慮峰后應(yīng)變軟化與擴(kuò)容的圓形巷道圍巖彈塑性D-P準(zhǔn)則解[J];采礦與安全工程學(xué)報(bào);2013年06期
5 袁亮;薛俊華;張農(nóng);盧平;;煤層氣抽采和煤與瓦斯共采關(guān)鍵技術(shù)現(xiàn)狀與展望[J];煤炭科學(xué)技術(shù);2013年09期
6 王海鋒;程遠(yuǎn)平;劉桂建;孔勝利;張瑞;;被保護(hù)層保護(hù)范圍的擴(kuò)界及連續(xù)開采技術(shù)研究[J];采礦與安全工程學(xué)報(bào);2013年04期
7 魏建軍;;考慮剪脹和軟化的巷道圍巖彈塑性分析[J];土木建筑與環(huán)境工程;2013年03期
8 王連國(guó);侯化強(qiáng);孫建;李憲偉;王占盛;;高應(yīng)力回采巷道圍巖破裂機(jī)理及危險(xiǎn)性評(píng)價(jià)[J];中國(guó)礦業(yè)大學(xué)學(xué)報(bào);2012年03期
9 侯化強(qiáng);王連國(guó);陸銀龍;張蓓;;矩形巷道圍巖應(yīng)力分布及其破壞機(jī)理研究[J];地下空間與工程學(xué)報(bào);2011年S2期
10 袁亮;;我國(guó)煤層氣開發(fā)利用的科學(xué)思考與對(duì)策[J];科技導(dǎo)報(bào);2011年22期
相關(guān)會(huì)議論文 前1條
1 鄭哲敏;;從數(shù)量級(jí)和量綱分析看煤與瓦斯突出的機(jī)理[A];鄭哲敏文集[C];2004年
,本文編號(hào):1344768
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1344768.html