小波分析在TRT發(fā)電機(jī)組故障診斷中的應(yīng)用研究
[Abstract]:Condition monitoring and fault diagnosis of mechanical equipment is a comprehensive technology, the essence of which is pattern recognition of machine running state. Firstly, the features of fault signal are extracted and classified, and then the fault signal is identified effectively by certain intelligent means. The effectiveness and accuracy of feature extraction is the key to mechanical fault diagnosis. The stable operation of TRT generator set, whether from the point of view of social benefits of energy saving and environmental protection or from the point of view of economic benefits of enterprises, to maintain the stable, efficient and stable operation of TRT generating set is beneficial without harm. In the actual production and operation process, the deterioration of the operation state of the TRT generator set begins with the change of the vibration of the unit, so it is very necessary to carry out vibration analysis and fault diagnosis of the TRT generator set. In this paper, the TRT generator set system is taken as the research object. Firstly, the spectrum analysis method is used to analyze the vibration signal of the TRT generator set system, and the working state of the TRT generator set system is judged. It is found that there is imbalance fault in TRT generator set system. Secondly, in order to further confirm the accuracy of the fault diagnosis, the wavelet analysis method is used to diagnose the TRT generator set system, that is, the db10 wavelet is used for five-layer wavelet decomposition, and the eigenvector of the wavelet reconstruction sequence is obtained. The obtained eigenvector is compared with the typical fault eigenvector, and the vibration signal is decomposed and reconstructed by means of MATLAB wavelet toolbox. The further fault diagnosis and analysis of TRT generator set system is carried out, and the fault type is determined. The analysis results show that there is an unbalanced fault in the TRT generator set system, and it is also proved that the wavelet analysis method is feasible to apply the wavelet analysis method to the fault diagnosis of the TRT generator set system. It is of certain guiding significance to establish a targeted maintenance system for enterprises.
【學(xué)位授予單位】:遼寧科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH165.3;TM31
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 簡小剛;張艷偉;馮躍;;工程機(jī)械故障診斷技術(shù)的研究現(xiàn)狀與發(fā)展趨勢[J];中國工程機(jī)械學(xué)報;2005年04期
2 劉進(jìn)林,趙憶農(nóng),趙秀梅;高爐煤氣余壓透平發(fā)電技術(shù)的應(yīng)用[J];華東電力;2001年08期
3 葉長青;高爐煤氣余壓透平發(fā)電裝置(TRT)的發(fā)展與創(chuàng)新[J];節(jié)能;2000年08期
4 馮祖強(qiáng);;高爐爐頂煤氣余壓發(fā)電(TRT)技術(shù)[J];柳鋼科技;2011年02期
5 陳海宗;謝超雄;葉正文;李長利;;大型旋轉(zhuǎn)設(shè)備在線監(jiān)測系統(tǒng)的應(yīng)用[J];燒結(jié)球團(tuán);2009年02期
6 楊曉明;;TRT技術(shù)在天鋼3200m~3高爐的應(yīng)用[J];天津冶金;2009年01期
7 何嶺松,李巍華;用Morlet小波進(jìn)行包絡(luò)檢波分析[J];振動工程學(xué)報;2002年01期
8 胡漢輝;楊洪;譚青;易念恩;;基于小波分析的風(fēng)機(jī)故障診斷[J];中南大學(xué)學(xué)報(自然科學(xué)版);2007年06期
相關(guān)博士學(xué)位論文 前2條
1 余紅英;機(jī)械系統(tǒng)故障信號特征提取技術(shù)研究[D];中北大學(xué);2005年
2 譚樹彬;軋機(jī)厚控系統(tǒng)狀態(tài)監(jiān)測與故障診斷的研究與應(yīng)用[D];東北大學(xué);2006年
相關(guān)碩士學(xué)位論文 前2條
1 丁曉偉;基于小波分析與神經(jīng)網(wǎng)絡(luò)的轉(zhuǎn)子狀態(tài)檢測與識別方法研究[D];東南大學(xué);2004年
2 周亮;基于小波分析的齒輪箱故障診斷技術(shù)的分析與研究[D];武漢科技大學(xué);2009年
本文編號:2492114
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2492114.html