復(fù)雜裝備故障預(yù)測與健康管理關(guān)鍵技術(shù)研究
[Abstract]:In recent years, the safety and reliability of complex equipment systems such as aviation, space and ship have become the focus of attention. As a result of its complex structure, a large loss can be caused once a failure occurs. Therefore, it is urgent to improve the reliability, repair and safety of the complex equipment system. However, the current research work in the field of fault diagnosis is mainly focused on the state evaluation and fault diagnosis of the research system, and concerned is the running state of the system "Current", and the research on system fault prediction and health management is less. This traditional "post-post service" and "plan and repair" approach is seriously inadequate in dealing with new situations of transient change. The "visual maintenance" and the "Predict maintenance" eliminate the fault in the bud state and become the development direction of the system maintenance and guarantee in the future. Therefore, in recent years, the research on the fault prediction and health management (PHM) has become the research focus of the domestic and foreign scholars, and the PHM technology represents the fault diagnosis technology from the traditional sensor-based diagnosis to the prediction of the intelligent system. But, at present, the research in this area has just started, and the research results are more In this paper, the key theory and technology involved in the PHM technology of complex equipment are studied, and the main content package includes: first, complex equipment PHM service mode Based on the analysis of the characteristics of complex equipment and the shortcomings of the traditional fault diagnosis model, a new service-oriented PHM system is proposed. This paper studies the system service model and characteristics, analyzes the key technology and main function modules required in the system construction process, and provides a kind of public PHM system service platform research in the field of complex equipment. New ideas. Second, data reduction and failure diagnosis Fault diagnosis is the core content of PHM, which is based on nonlinear manifold learning and Hidden Markov Model (HMM). The hybrid HMM model divides the system state into the normal state, the intermittent fault, the intermediate state and the fault state, so as to fully reflect the system state. In this paper, the original high-dimensional fault data is mapped to a low-dimensional space by a local holding projection algorithm (LPP), and the inner manifold characteristic of the extracted data is taken as a feature vector, and the mixed HMM is used as a classifier to realize the pair of states. The results show that the LPP-HMM method can effectively identify the early fault features and has higher accuracy. Fault recognition rate. Third, time series The prediction of fault is the key to the PHM, and the auto-regressive and moving average model (ARMA) and the artificial neural network (ANN) are put forward. The method of state prediction is based on the advantage of the linear part of the capture time series and the good performance of the ANN processing non-linear time series by using the ARMA model. The linear part of the time series is established by the ARMA model, and the neural network model is established by the remainder of the sequence. Based on the hybrid model, a model of satellite telemetry voltage data is taken as an example to realize the static model prediction and the dynamic model prediction of the telemetry parameters. The experimental results show that the hybrid dynamic model has the characteristics of Based on the mixed model, a state monitoring method is realized by using the telemetry pressure data as an example, and the experiment shows that the method can be used effectively. Reduce the false alarm rate of the fault. Fourth, the fault knowledge Modeling and service technology research. The fault knowledge management is the foundation of the PHM, aiming at the problems of low reuse rate, serious knowledge fault and the like of the current fault diagnosis knowledge resource, and the fault knowledge management is based on the fault of the domain ontology in that first place, two types of fault knowledge classification method of static and dynamic are put forward, and the reasoning knowledge body and the multi-domain knowledge body are constructed; then, based on the reasoning knowledge body, the fault knowledge reasoning is realized, The index, the semantic annotation, the semantic retrieval and the knowledge management of the source can effectively acquire the diagnosis static knowledge in the stages of product design, test and the like; and through the service encapsulation and the semantic annotation of the relative curing diagnosis and the prediction model knowledge resources, the dynamic knowledge is realized. Knowledge search and call service to effectively improve the diagnosis knowledge resource Use efficiency and reuse rate. 5. The development of PHM service system. Based on the above research contents, taking the spacecraft as an example, for the characteristics of its on-orbit operation, the research The ground PHM system of the spacecraft is developed. The fault prediction, the fault diagnosis, the fault knowledge management and the service are integrated to improve the capability of the spacecraft in the operation and maintenance of the rail and the ground test. In this paper, the service mode and key technology of the PHM system of complex equipment are analyzed and studied systematically, and the corresponding PHM prototype system is developed and verified by combining the characteristics of the spacecraft. The feasibility and effectiveness of the method proposed in the paper. Through the research of this paper, it is necessary to improve the diagnosis and maintenance of complex equipment
【學(xué)位授予單位】:北京理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TH165.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳偉;羅華;;多傳感器信息融合技術(shù)與無人機(jī)PHM系統(tǒng)[J];航空科學(xué)技術(shù);2009年06期
2 馮廣斌 ,錢林方;機(jī)械系統(tǒng)PHM技術(shù)研究[J];火炮發(fā)射與控制學(xué)報;2000年04期
3 陳偉;趙博;;多傳感器信息融合技術(shù)與無人機(jī)PHM系統(tǒng)[J];桂林航天工業(yè)高等?茖W(xué)校學(xué)報;2009年04期
4 張叔農(nóng);康銳;;數(shù)據(jù)挖掘技術(shù)在航空發(fā)動機(jī)PHM中的應(yīng)用[J];彈箭與制導(dǎo)學(xué)報;2008年01期
5 何獻(xiàn)武;曾振建;賈慧;胥輝旗;;PHM技術(shù)在反艦導(dǎo)彈維修保障中的傳感器網(wǎng)絡(luò)應(yīng)用研究[J];儀器儀表用戶;2007年02期
6 孫博;康銳;張叔農(nóng);;基于特征參數(shù)趨勢進(jìn)化的故障診斷和預(yù)測方法[J];航空學(xué)報;2008年02期
7 茍永明;第十三屆全國測試與故障診斷技術(shù)研討會取得圓滿成功[J];計算機(jī)測量與控制;2004年06期
8 吳康祥;楊紅;;設(shè)備故障診斷技術(shù)及應(yīng)用設(shè)想[J];梅山科技;2001年03期
9 ;2006設(shè)備節(jié)能與故障診斷技術(shù)研討會即將召開[J];今日中國論壇;2006年06期
10 葉銀忠;故障診斷技術(shù)的發(fā)展趨勢及我們的對策[J];自動化博覽;2002年03期
相關(guān)會議論文 前10條
1 田瑾;趙廷弟;;機(jī)械產(chǎn)品故障預(yù)測和狀態(tài)管理(PHM)技術(shù)研究[A];2004年全國機(jī)械可靠性學(xué)術(shù)交流會論文集[C];2004年
2 李文強(qiáng);;PHM技術(shù)在無人機(jī)中應(yīng)用[A];2014(第五屆)中國無人機(jī)大會論文集[C];2014年
3 王萍;;無人機(jī)系統(tǒng)PHM的要求確定和設(shè)計方法[A];探索 創(chuàng)新 交流——第六屆中國航空學(xué)會青年科技論壇文集(上冊)[C];2014年
4 張永強(qiáng);王麗;;PHM技術(shù)在無人機(jī)領(lǐng)域的應(yīng)用與研究[A];2014(第五屆)中國無人機(jī)大會論文集[C];2014年
5 高秋穎;錢紅余;;航空發(fā)動機(jī)預(yù)測健康管理(PHM)技術(shù)[A];面向航空試驗(yàn)測試技術(shù)——2013年航空試驗(yàn)測試技術(shù)峰會暨學(xué)術(shù)交流會論文集[C];2013年
6 田巍;張瑞敏;魏娜;康杰;;PHM在無人機(jī)維修中的應(yīng)用[A];航空裝備維修技術(shù)及應(yīng)用研討會論文集[C];2015年
7 張利;徐娟;張建軍;程龍;趙佛曉;;基于網(wǎng)格的遠(yuǎn)程協(xié)同故障診斷資源管理模型研究[A];全國第20屆計算機(jī)技術(shù)與應(yīng)用學(xué)術(shù)會議(CACIS·2009)暨全國第1屆安全關(guān)鍵技術(shù)與應(yīng)用學(xué)術(shù)會議論文集(上冊)[C];2009年
8 商斌梁;張振仁;;基于小波與遺傳算法的氣閥機(jī)構(gòu)的故障診斷[A];2001年中國智能自動化會議論文集(下冊)[C];2001年
9 劉富;羅巧梅;;基于PHM的北斗用戶設(shè)備維修保障研究[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會電子文集——S08衛(wèi)星導(dǎo)航模型與方法[C];2012年
10 李娟;;淺談泵站設(shè)備故障診斷問題[A];2009全國大型泵站更新改造研討暨新技術(shù)、新產(chǎn)品交流大會論文集[C];2009年
相關(guān)重要報紙文章 前10條
1 武漢科技學(xué)院紡織服裝學(xué)院 林子務(wù);故障診斷中的數(shù)學(xué)概念[N];中國紡織報;2004年
2 邢小兵 記者 王瑤;我國首個航天器在軌故障診斷與維修實(shí)驗(yàn)室成立[N];解放軍報;2014年
3 楊亞洲 邢小兵 記者 齊小英;航天器故障診斷與維修室在西安成立[N];陜西日報;2013年
4 李萍;濟(jì)鋼EAM離線網(wǎng)絡(luò)點(diǎn)檢和故障診斷管理系統(tǒng)開發(fā)應(yīng)用[N];世界金屬導(dǎo)報;2007年
5 ;點(diǎn)火系故障診斷[N];華夏時報;2001年
6 本報記者 謝湘 王堯;北京理工大學(xué):把企業(yè)請進(jìn)來 讓學(xué)生的手動起來[N];中國青年報;2008年
7 本報記者 田國壘;吉林省紀(jì)檢委派人調(diào)查[N];中國青年報;2011年
8 本報記者 閔杰;全國政協(xié)委員、北京理工大學(xué)教授王涌天:我國部分VR技術(shù)已超前[N];中國電子報;2017年
9 本報記者 譚華健;轉(zhuǎn)化科技成果助中山產(chǎn)業(yè)升級[N];中山日報;2017年
10 本報記者 許茜;爆炸實(shí)驗(yàn)室里的深情“表白”[N];科技日報;2017年
相關(guān)博士學(xué)位論文 前10條
1 李向前;復(fù)雜裝備故障預(yù)測與健康管理關(guān)鍵技術(shù)研究[D];北京理工大學(xué);2014年
2 王奉濤;非平穩(wěn)信號故障特征提取與智能診斷方法的研究及應(yīng)用[D];大連理工大學(xué);2003年
3 錢華明;故障診斷與容錯技術(shù)及其在組合導(dǎo)航系統(tǒng)中的應(yīng)用研究[D];哈爾濱工程大學(xué);2004年
4 蔣麗英;基于FDA/DPLS方法的流程工業(yè)故障診斷研究[D];浙江大學(xué);2005年
5 韓彥嶺;面向復(fù)雜設(shè)備的遠(yuǎn)程智能診斷技術(shù)及其應(yīng)用研究[D];上海大學(xué);2005年
6 張君;小波分析技術(shù)在汽輪機(jī)故障診斷中的應(yīng)用研究[D];華北電力大學(xué)(河北);2005年
7 鄧學(xué)欣;開放式故障診斷構(gòu)架及動態(tài)測試分析方法研究[D];天津大學(xué);2004年
8 譚樹彬;軋機(jī)厚控系統(tǒng)狀態(tài)監(jiān)測與故障診斷的研究與應(yīng)用[D];東北大學(xué);2006年
9 賈明興;不確定系統(tǒng)魯棒故障診斷[D];東北大學(xué);2003年
10 劉敏華;基于SDG模型的故障診斷及應(yīng)用研究[D];清華大學(xué);2005年
本文編號:2488268
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2488268.html