基于EMD近似熵和LS-SVM的齒輪箱故障診斷研究
[Abstract]:Gearbox is an important transmission component in mechanical equipment, so it is of great practical significance to study the fault diagnosis of gearbox. In this paper, EMD (Empirical Mode Decomposition) approximate entropy and LSSVM (Least SquareSupport Vector Machine) are combined to realize the fault diagnosis of gearbox. The EMD method has good localization characteristics for signal processing, and has a very good decomposition effect for nonlinear and non-stationary signals. Approximate entropy can contain more information in describing the dynamic characteristics of the signal. LSSVM has inherent advantages in extracting fault features of signals. LSSVM is an improvement and deformation for the disadvantages of SVM (Support Vector Machine) as a classification algorithm, which has too long running time and too much computation. The experimental results show that LSSVM can realize fault identification accurately and quickly in gearbox fault diagnosis. This paper first expounds the significance, purpose and research status of gearbox fault diagnosis at home and abroad, and summarizes the current fault diagnosis technology. Secondly, the vibration mechanism and fault type of gearbox are introduced, and then the end-point effect of EMD method in decomposing signal is studied. The mirror image extension and the combination of windowing function on the signal sequence are proposed to improve the EMD method. The experimental results show that the improved EMD method has achieved very good results in signal decomposition. Then the fault features of gearbox are extracted by using the method of EMD and approximate entropy. SVM and LSSVM are compared theoretically and in specific experiments to highlight the advantages of LSSVM in fault identification. Finally, the improved EMD method combined with approximate entropy is used to extract the fault features, LSSVM is used to identify the extracted fault features, and then several other fault diagnosis methods are compared. It is shown that EMD approximate entropy and LSSVM can improve the accuracy and efficiency of gearbox fault diagnosis.
【學(xué)位授予單位】:中北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TH165.3;TH132.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 許寶杰;張建民;徐小力;李建偉;;抑制EMD端點(diǎn)效應(yīng)方法的研究[J];北京理工大學(xué)學(xué)報(bào);2006年03期
2 郭輝;劉賀平;王玲;;最小二乘支持向量機(jī)參數(shù)選擇方法及其應(yīng)用研究[J];系統(tǒng)仿真學(xué)報(bào);2006年07期
3 楊建文;賈民平;;希爾伯特-黃譜的端點(diǎn)效應(yīng)分析及處理方法研究[J];振動(dòng)工程學(xué)報(bào);2006年02期
4 舒忠平;楊智春;;抑制經(jīng)驗(yàn)?zāi)7纸膺吘壭?yīng)的極值點(diǎn)對(duì)稱延拓法[J];西北工業(yè)大學(xué)學(xué)報(bào);2006年05期
5 丁康,王延春;傳動(dòng)箱齒輪和軸故障的振動(dòng)診斷方法的研究[J];振動(dòng)與沖擊;1994年02期
6 鄭勇濤,劉玉樹;支持向量機(jī)解決多分類問題研究[J];計(jì)算機(jī)工程與應(yīng)用;2005年23期
相關(guān)博士學(xué)位論文 前2條
1 楊宇;基于EMD和支持向量機(jī)的旋轉(zhuǎn)機(jī)械故障診斷方法研究[D];湖南大學(xué);2005年
2 程軍圣;基于Hilbert-Huang變換的旋轉(zhuǎn)機(jī)械故障診斷方法研究[D];湖南大學(xué);2005年
相關(guān)碩士學(xué)位論文 前5條
1 成瓊;基于小波分析的齒輪故障診斷研究[D];湖南大學(xué);2001年
2 顧小軍;面向旋轉(zhuǎn)機(jī)械的支持向量機(jī)方法及智能故障診斷系統(tǒng)研究[D];浙江大學(xué);2006年
3 魏于凡;支持向量機(jī)在智能故障診斷中的應(yīng)用研究[D];華北電力大學(xué)(北京);2007年
4 許昕;齒輪箱故障診斷在安全生產(chǎn)中的應(yīng)用[D];中北大學(xué);2007年
5 楊皓;分形理論應(yīng)用于齒輪箱滾動(dòng)軸承故障診斷的研究[D];長(zhǎng)沙理工大學(xué);2007年
本文編號(hào):2482905
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2482905.html