基于信息熵的渦旋壓縮機(jī)的故障診斷研究
[Abstract]:In recent years, the platform of the test system based on scroll compressor and the analysis of its vibration and noise have shown a very broad application prospect, but it is still difficult to meet the requirements of monitoring the running state of scroll compressor. Because the application time of scroll compressor in China is not very long, the fault analysis of scroll compressor in the process of its use is not much, and it is still in the initial stage of building test platform to describe its working state by traditional single spectrum analysis. The performance data of its operation condition can not be obtained by accurate mathematical model calculation. Moreover, the vibration source of scroll compressor is more, the signal of shell surface is non-stationary and non-linear, so the fault diagnosis of scroll compressor is more complicated. On the basis of conventional spectrum analysis, this paper uses multi-angle information fusion to distinguish the fault of non-stationary signal more accurately. Based on the idea of vibration signal analysis and the theory of entropy and grey correlation degree in information theory, a singular spectral entropy based on time domain and power spectral entropy in frequency domain is established in this paper. A new fault diagnosis method based on time-frequency domain wavelet energy spectrum entropy and wavelet spatial characteristic spectrum entropy is proposed and used as a quantitative characteristic index for comprehensive evaluation of the vibration state of scroll compressor. Several difficulties are analyzed in this paper. One is the parameter selection of the embedding delay theory of singular spectral entropy, which is directly related to the discrimination effect of singular decomposition on the effective information and noise of the signal. Secondly, the traditional probability entropy is improved when the sliding window is added, so that the power spectrum entropy and the wavelet spectrum entropy reflect the distribution difference and change of the local characteristics of the signal. The mathematical models of singular spectral entropy, power spectral entropy, wavelet energy spectrum entropy and wavelet characteristic spectral entropy are established by using several algorithms of information entropy in MATLAB signal processing toolbox. Combined with the entropy reference samples of the scroll compressor at different speeds and the samples to be diagnosed, the grey correlation analysis is carried out, and the quantitative results of the grey correlation degree are directly used to realize the good identification of several faults of the scroll compressor. The validity of this fault diagnosis method is proved.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH45;TN911.7;O236
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐克紅;程鵬飛;文漢江;;太陽黑子數(shù)時間序列的奇異譜分析和小波分析[J];測繪科學(xué);2007年06期
2 劉濤;邵華;;基于LabVIEW的變頻渦旋壓縮機(jī)振動信號分析[J];電子測量技術(shù);2009年07期
3 劉振全,任俊士;渦旋壓縮機(jī)的振動時域和頻域分析[J];甘肅工業(yè)大學(xué)學(xué)報;2000年01期
4 彭斌,劉振全,李海生;變頻渦旋壓縮機(jī)測試系統(tǒng)的研究[J];化工自動化及儀表;2005年03期
5 張賽飛;高躍飛;薛百文;;基于分形理論齒輪箱故障診斷研究[J];火炮發(fā)射與控制學(xué)報;2007年02期
6 耿俊豹;黃樹紅;陳非;劉偉;;基于信息熵貼近度的旋轉(zhuǎn)機(jī)械故障診斷[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2006年11期
7 蔣培,胡曉棠;一種新的選擇相空間重構(gòu)參數(shù)的方法[J];機(jī)械科學(xué)與技術(shù);2001年03期
8 耿俊豹;黃樹紅;金家善;陳非;申_";劉偉;;基于信息熵貼近度和證據(jù)理論的旋轉(zhuǎn)機(jī)械故障診斷方法[J];機(jī)械科學(xué)與技術(shù);2006年06期
9 申_",黃樹紅,韓守木,楊叔子;旋轉(zhuǎn)機(jī)械振動信號的信息熵特征[J];機(jī)械工程學(xué)報;2001年06期
10 侯敬宏,黃樹紅,申_",張燕平;基于小波分析的旋轉(zhuǎn)機(jī)械振動信號定量特征研究[J];機(jī)械工程學(xué)報;2004年01期
相關(guān)博士學(xué)位論文 前1條
1 謝平;故障診斷中信息熵特征提取及融合方法研究[D];燕山大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 杜文武;組合型線渦旋壓縮機(jī)型線設(shè)計與渦旋齒的有限元分析[D];蘭州理工大學(xué);2011年
2 雷劍宇;鼓風(fēng)機(jī)和壓縮機(jī)性能測試系統(tǒng)設(shè)計與實(shí)踐[D];西北工業(yè)大學(xué);2005年
3 陳非;基于融合信息熵距的旋轉(zhuǎn)機(jī)械振動故障定量診斷研究[D];華中科技大學(xué);2005年
4 林洪彬;信息熵分析方法研究及其在故障診斷中的應(yīng)用[D];燕山大學(xué);2006年
5 劉銳;基于小波變換的電能質(zhì)量擾動的研究[D];廈門大學(xué);2006年
6 胡軍輝;基于譜熵的故障特征提取與數(shù)據(jù)挖掘技術(shù)研究[D];西北工業(yè)大學(xué);2007年
7 柳會敏;基于LabVIEW的變頻渦旋壓縮機(jī)性能測控系統(tǒng)的研究[D];蘭州理工大學(xué);2008年
8 陳宏;基于小波能熵和支持向量機(jī)的故障診斷方法及其應(yīng)用研究[D];燕山大學(xué);2010年
9 吳虎;基于MATLAB遺傳算法工具箱的組合渦旋型線優(yōu)化[D];蘭州理工大學(xué);2010年
10 邵華;基于LabVIEW的變頻渦旋壓縮機(jī)振動測試系統(tǒng)[D];蘭州理工大學(xué);2010年
本文編號:2451727
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2451727.html