天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機械論文 >

引信用MEMS慣性開關(guān)技術(shù)研究

發(fā)布時間:2019-03-20 19:29
【摘要】:微機電(MEMS)慣性開關(guān)是對加速度的變化敏感并提供開關(guān)閉合動作的MEMS執(zhí)行器,也稱閾值開關(guān)、加速度開關(guān)或者g值開關(guān)。MEMS慣性開關(guān)不但體積小、響應(yīng)快、能夠捕捉微弱的信號而且很容易和外接電路融合,尤其適用于彈藥的特殊環(huán)境。引信用MEMS慣性開關(guān)要求具有較強的抗過載性能、通用性、萬向性等特殊要求,普通開關(guān)難以滿足要求,且開關(guān)在工作過程中受多物理場耦合作用,其工作機理復(fù)雜,相關(guān)的設(shè)計理論不能滿足需求,嚴(yán)重制約了MEMS慣性開關(guān)在引信中的應(yīng)用。本文深入研究開關(guān)系統(tǒng)的靜電力場、彈性力場、慣性力場、阻尼力場等多種物理場及耦合的基本問題,設(shè)計了兩種MEMS慣性開關(guān),分別滿足引信的通用性和萬向性需求。 分析懸臂梁式的MEMS慣性開關(guān)在彈性力場與靜電場耦合作用下出現(xiàn)的吸合效應(yīng),并求解出吸合電壓;分析靜電力作用下懸臂梁系統(tǒng)的有效彈性系數(shù)減小的負(fù)彈簧效應(yīng)。提出計算靜電驅(qū)動懸臂梁結(jié)構(gòu)變形的三種方法,等效剛度法、模態(tài)疊加法和有限元反饋法,分別應(yīng)用等效剛度法和有限元反饋法求解靜電力作用下懸臂梁的變形特性,并比較三種方法的優(yōu)缺點和適用性;建立了慣性力、靜電力和阻尼力耦合作用下懸臂梁開關(guān)的動態(tài)模型。引入表征流體性能的雷諾方程,建立了懸臂梁的流-固耦合的擠壓膜阻模型,推導(dǎo)出了在靜電力、慣性力耦合作用時,懸臂梁壓膜阻尼系數(shù)的計算公式。 針對引信用慣性開關(guān)的通用性要求,設(shè)計了一種具有閾值可調(diào)功能的懸臂梁開關(guān),該開關(guān)能夠通過調(diào)節(jié)偏置電壓以調(diào)節(jié)加速度閾值;陟o電驅(qū)動原理,推導(dǎo)出開關(guān)加速度閾值和偏置電壓的關(guān)系;建立多物理場耦合下開關(guān)的系統(tǒng)級模型,對開關(guān)的準(zhǔn)靜態(tài)特性和動態(tài)特性進行系統(tǒng)級分析,研究可變閾值開關(guān)的基本性能。以500g為一檔,調(diào)節(jié)加速度閾值范圍為:500g~2500g,開關(guān)響應(yīng)時間小于載荷持續(xù)時間的10%,開關(guān)接觸時間大于300μs。 針對引信用慣性開關(guān)萬向性的要求,提出了一種多彈性支撐的環(huán)形分布式萬向慣性開關(guān)。建立了開關(guān)的動力學(xué)控制方程;對開關(guān)進行靜態(tài)特性分析,基于能量法中的卡式定律和胡克定律,推導(dǎo)出S型懸臂梁剛度的計算公式并進行有限元仿真驗證,結(jié)果表明理論推導(dǎo)計算值和有限元仿真值的相對誤差小于3%,S型折疊懸臂梁的理論公式推導(dǎo)正確;對開關(guān)進行動態(tài)特性分析,研究多彈性支撐的環(huán)形萬向慣性開關(guān)的基本性能。開關(guān)在700g加速度閾值作用下,響應(yīng)時間為0.12ms,兩電極接觸時間為35μs。 介紹了多彈性支撐環(huán)形分布式MEMS萬向慣性開關(guān)的加工工藝流程,研究了開關(guān)的檢測技術(shù);應(yīng)用相移顯微干涉法測量開關(guān)尺寸,通過尺寸檢測得出懸臂梁的線寬誤差分布及開關(guān)中可動電極和固定電極的間隙尺寸的加工誤差范圍,分析了尺寸誤差對閾值加速度的影響;設(shè)計了一種沖擊臺試驗用以測試開關(guān)的加速度閾值,該沖擊臺能夠通過增加緩沖墊達到增加加速度脈沖寬度的目的;對開關(guān)進行了馬歇特落錘實驗,結(jié)果表明30000g加速度的高過載條件下,開關(guān)沒有發(fā)生形變和斷裂現(xiàn)象,仍然能保持良好的工作性能。
[Abstract]:A micro-electro-mechanical (MEMS) inertial switch is a MEMS actuator that is sensitive to changes in acceleration and provides a switch-on action, also known as a threshold switch, an acceleration switch, or a g-value switch. The MEMS inertial switch is small in size, fast in response, capable of capturing weak signals and being easy to fuse with external circuits, and is especially suitable for the special environment of the ammunition. The MEMS inertial switch for fuze is required to have strong anti-overload performance, general purpose, universal and other special requirements. The general switch is difficult to meet the requirements, and the switch is subjected to multi-physical field coupling in the working process, the working mechanism is complex, and the relevant design theory can not meet the requirement. The application of MEMS inertial switch in fuze is seriously restricted. In this paper, the basic problems of various physical fields and coupling of the electrostatic field, the elastic force field, the inertial force field and the damping force field of the switching system are studied in this paper. The two kinds of MEMS inertial switches are designed to meet the general and universal requirements of the fuze, respectively. The pull-in effect of a cantilever-type MEMS inertial switch under the coupling of the elastic force field and the electrostatic field is analyzed, and the pull-in voltage is solved; and the negative spring effect of the effective elastic coefficient reduction of the cantilever beam system under the action of the electrostatic force is analyzed. The three methods, the equivalent stiffness method, the mode superposition method and the finite element feedback method for calculating the deformation of the electrostatic-driven cantilever beam structure are proposed. The deformation characteristics of the cantilever beam under the action of the electrostatic force are solved by the equivalent stiffness method and the finite element feedback method, and the advantages and disadvantages and the application of the three methods are compared. the dynamic mode of the cantilever beam switch under the coupling action of the inertial force, the electrostatic force and the damping force is established, The flow-solid coupling of the cantilever beam is established by introducing the Reynolds equation for the performance of the fluid. The calculation of the damping coefficient of the cantilever beam is derived in the case of the coupling of the electrostatic force and the inertial force. In order to meet the general requirements of the inertial switch for fuze, a cantilever switch with a threshold-adjustable function is designed, which can adjust the bias voltage to adjust the acceleration. Based on the principle of electrostatic driving, the relationship between the threshold of the switch acceleration and the bias voltage is derived; the system-level model of the switch under the multi-physical field coupling is established, the quasi-static and dynamic characteristics of the switch are analyzed, and the basis of the variable threshold switch is studied. The performance is in the range of 500 g-2500g, the response time of the switch is less than 10% of the load duration, and the contact time of the switch is greater than 30 In order to meet the requirements of the universal performance of the inertial switch for fuze, a multi-elastic support ring-shaped distributed van is proposed. The dynamic control equation of the switch is established. The static characteristic analysis of the switch is carried out, and the calculation formula of the stiffness of the S-type cantilever beam is derived based on the card law and the Hooke's law in the energy method. The results show that the relative error of the theoretical derivation and the finite element simulation value is less than 3%, and the theoretical formula of the S-type folded cantilever beam is derived correctly; the dynamic characteristic analysis of the switch is carried out to study the multi-elastic support ring-type universal inertia switch Basic performance of the switch. The response time is 0.12ms and the contact time of the two electrodes is 0.12ms under the action of 700 g of acceleration threshold In this paper, the processing flow of multi-elastic support ring-shaped distributed MEMS universal inertial switch is introduced, the detection technology of the switch is studied, and the phase shift micro-interference is applied. The size of the switch is measured, the error distribution of the line width of the cantilever beam and the machining error range of the gap dimension of the movable electrode and the fixed electrode in the switch are obtained by size detection, the influence of the size error on the threshold acceleration is analyzed, and an impact table test is designed to test the opening. The acceleration threshold value of the switch can be increased by adding the cushion pad to the purpose of increasing the width of the acceleration pulse. The switch is subjected to a horse-rest drop hammer experiment, and the result shows that under the condition of high overload of 30000g of acceleration, the switch has no deformation and fracture phenomenon, and can still be kept
【學(xué)位授予單位】:長春理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2013
【分類號】:TH-39

【參考文獻】

相關(guān)期刊論文 前10條

1 吝海鋒;何洪濤;卞玉民;楊擁軍;;一種新型無源MEMS萬向碰撞開關(guān)[J];微納電子技術(shù);2009年06期

2 徐永青;楊擁軍;;硅MEMS器件加工技術(shù)及展望[J];微納電子技術(shù);2010年07期

3 郭方敏,賴宗聲,朱自強,賈銘,初建朋,范忠,朱榮錦,戈肖鴻,楊根慶,陸衛(wèi);懸臂式RF MEMS開關(guān)的設(shè)計與研制[J];半導(dǎo)體學(xué)報;2003年11期

4 張國炳,郝一龍,田大宇,劉詩美,王鐵松,武國英;多晶硅薄膜應(yīng)力特性研究[J];半導(dǎo)體學(xué)報;1999年06期

5 金磊,高世橋,李文杰;微加速度傳感器硅微結(jié)構(gòu)設(shè)計[J];傳感器技術(shù);2000年02期

6 張海濤,張斌;微電子機械系統(tǒng)技術(shù)及其應(yīng)用[J];電子元件與材料;2002年04期

7 張健;李偉華;聶萌;;基于力學(xué)描述的MEMS器件行為模擬方法[J];電子器件;2006年04期

8 王培霞,賈育秦;從物理學(xué)發(fā)展看MEMS的跨學(xué)科研究[J];物理與工程;2005年05期

9 陳光焱;吳嘉麗;趙龍;王超;;基于阿基米德螺旋線的低g值微慣性開關(guān)(英文)[J];光學(xué)精密工程;2009年06期

10 石然;裘安萍;蘇巖;;硅微諧振式加速度計的實現(xiàn)及性能測試[J];光學(xué)精密工程;2010年12期

相關(guān)博士學(xué)位論文 前1條

1 黃玉波;MEMS力學(xué)特性測試及可靠性分析中若干關(guān)鍵問題的研究[D];天津大學(xué);2008年

,

本文編號:2444557

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2444557.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶07452***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
人妻精品一区二区三区视频免精| 手机在线不卡国产视频| 日韩精品人妻少妇一区二区| 熟女免费视频一区二区| 在线一区二区免费的视频| 激情五月天免费在线观看| 自拍偷拍一区二区三区| 久久精品视频就在久久| 中文字幕日韩欧美一区| 日韩人妻毛片中文字幕| 国内尹人香蕉综合在线| 欧美激情中文字幕综合八区| 中国黄色色片色哟哟哟哟哟哟| 欧美日韩一级aa大片| 中文字幕欧美精品人妻一区| 中文字幕亚洲视频一区二区| 午夜精品国产一区在线观看| 国产不卡免费高清视频| 蜜桃传媒视频麻豆第一区| 久久精品a毛片看国产成人| 国产精品内射婷婷一级二级| 欧美成人一区二区三区在线| 亚洲熟女精品一区二区成人| 日本和亚洲的香蕉视频| 欧美性欧美一区二区三区| 成人免费高清在线一区二区| 日韩丝袜诱惑一区二区| 粉嫩国产一区二区三区在线| 日本免费一本一二区三区| 高清一区二区三区不卡免费| 色婷婷丁香激情五月天| 儿媳妇的诱惑中文字幕| 麻豆蜜桃星空传媒在线观看| 亚洲视频偷拍福利来袭| 欧美黄色成人真人视频| 国产专区亚洲专区久久| 麻豆91成人国产在线观看| 91偷拍裸体一区二区三区| 欧美一区日韩二区亚洲三区| 国产一级片内射视频免费播放| 日韩精品人妻少妇一区二区|