多維多尺度齒輪故障特征提取與分類的研究
[Abstract]:Two key parts in gear fault diagnosis are signal feature extraction and pattern recognition. This paper comprehensively analyzes the research status of gear fault diagnosis technology at home and abroad, based on the vibration mechanism of gear and the characteristics of vibration signal of gear fault. A multi-dimensional and multi-scale feature extraction algorithm and a fault classification algorithm based on fuzzy C clustering are proposed. The specific research contents are as follows: (1) on the basis of summarizing the vibration signal characteristics of gear under different states, the vibration signal characteristics of gear normal, wear and broken teeth are simulated by using simulation signal. The vibration signal characteristics of different faults are grasped more intuitively, and the simulation signals are also provided for fault classification. (2) A multi-dimensional and multi-scale feature extraction algorithm is proposed. After singular value decomposition (SVD), the one-dimensional signal is reconstituted into multi-dimensional signal, which highlights more characteristic information. Then singular value decomposition (SVD) is used to decompose the amplitude modulation-FM signal of different scales, and the product function of high energy is taken to sum and reconstruct. Finally, the morphological difference filter is used to extract the feature information, and the effectiveness of the method is verified by simulation experiment and gear fault simulation experiment. (3) on the basis of feature extraction, fuzzy C clustering algorithm is introduced into fault classification, and the appropriate feature quantity is selected from the extracted feature information. The fuzzy C clustering algorithm is proved to be an effective fault classification algorithm by means of simulation experiments and gear fault simulation experiments. In this paper, an effective fault feature extraction algorithm and fault classification algorithm are proposed, and the validity of the algorithm is verified, which provides an effective and accurate method for gear fault diagnosis.
【學(xué)位授予單位】:武漢科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TH165.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 章立軍;徐金梧;陽建宏;楊德斌;;自適應(yīng)多尺度形態(tài)學(xué)分析及其在軸承故障診斷中的應(yīng)用[J];北京科技大學(xué)學(xué)報;2008年04期
2 申永軍,楊紹普,劉獻(xiàn)棟;齒輪故障診斷中的信號處理技術(shù)研究與展望[J];機(jī)械傳動;2004年03期
3 姜萬錄,王益群,孔祥東;齒輪故障的混沌診斷識別方法[J];機(jī)械工程學(xué)報;1999年06期
4 湯寶平;蔣永華;張詳春;;基于形態(tài)奇異值分解和經(jīng)驗?zāi)B(tài)分解的滾動軸承故障特征提取方法[J];機(jī)械工程學(xué)報;2010年05期
5 魯緒閣;范云霄;錢抗抗;;設(shè)備故障診斷技術(shù)綜述及其發(fā)展趨勢[J];礦山機(jī)械;2007年12期
6 杜萬里;張祖治;賈爽;毛明;;展成法加工的弧齒錐齒輪仿切幾何建模方法(英文)[J];Transactions of Nanjing University of Aeronautics & Astronautics;2010年03期
7 張光明;申永軍;吳彥彥;;基于Gabor變換的信號降噪方法[J];石家莊鐵道學(xué)院學(xué)報(自然科學(xué)版);2009年03期
8 呂勇,李友榮,王志剛,朱瑞蓀;虛擬儀器技術(shù)及其在機(jī)械故障診斷中的應(yīng)用[J];武漢科技大學(xué)學(xué)報(自然科學(xué)版);2002年02期
9 呂勇,李友榮,謝民,徐金梧,王志剛;高線精軋機(jī)組遠(yuǎn)程監(jiān)測與診斷應(yīng)用研究[J];冶金設(shè)備;2003年05期
10 成瓊,于德介,程軍圣;基于高斯線調(diào)頻小波變換能量譜的齒輪故障診斷[J];振動與沖擊;2002年02期
本文編號:2430847
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2430847.html