天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機(jī)械論文 >

基于流形學(xué)習(xí)的滾動軸承早期故障識別方法研究

發(fā)布時(shí)間:2019-02-14 14:16
【摘要】:滾動軸承作為旋轉(zhuǎn)機(jī)械裝備中關(guān)鍵且易發(fā)生故障的零部件之一,其運(yùn)行狀態(tài)直接影響整個(gè)裝備系統(tǒng)的性能,因此對滾動軸承進(jìn)行狀態(tài)識別與故障診斷研究具有重要意義。信號降噪和故障特征提取是狀態(tài)識別與故障診斷中最核心的內(nèi)容,由于滾動軸承運(yùn)行環(huán)境復(fù)雜,干擾多、噪聲大,且故障信號多為非平穩(wěn)非線性信號,從而大大降低了傳統(tǒng)降噪與故障特征提取方法的有效性。為此,本文以滾動軸承為研究對象,針對其強(qiáng)背景噪聲下的早期故障振動信號特點(diǎn),將流形方法與其它現(xiàn)代振動信號分析方法相結(jié)合,對滾動軸承故障信號的降噪和特征提取問題展開深入研究。論文主要內(nèi)容如下: 1.論述了選題的背景意義及國內(nèi)外滾動軸承故障診斷的發(fā)展進(jìn)程;對當(dāng)代滾動軸承故障診斷中的降噪和故障特征提取兩個(gè)關(guān)鍵問題進(jìn)行了詳細(xì)綜述;剖析了滾動軸承常見故障形式及其成因與后果;闡述了滾動軸承的振動機(jī)理及時(shí)域、頻域、時(shí)頻域振動分析理論的具體使用方法。 2.針對滾動軸承早期微弱故障特征易被噪聲及干擾成分所淹沒的問題,將KPCA流形、EMD和LTSA流形相結(jié)合,提出了改進(jìn)EMD的早期微弱故障信號降噪方法。首先在EMD分解前先進(jìn)行一次KPCA流形降噪,然后在EMD分解基礎(chǔ)上將所有IMF系數(shù)利用LTSA流形算法提取其低維流形分量,并將其求和得到新信號,實(shí)現(xiàn)降噪。該方法不僅充分利用了EMD完全自適應(yīng)性分析非平穩(wěn)非線性信號的優(yōu)勢,還能有效克服噪聲對EMD分解效果的影響,并很好地解決了常規(guī)EMD應(yīng)用中忽略大部分分量造成故障信息丟失的問題。工程實(shí)際信號對比分析驗(yàn)證了該方法的有效性與優(yōu)越性。 3.針對如何有效提取非平穩(wěn)非線性故障信號敏感特征問題,提出了基于二維流形-Hilbert時(shí)頻譜的滾動軸承時(shí)頻故障特征提取方法。首先在Hilbert時(shí)頻分析基礎(chǔ)上,應(yīng)用改進(jìn)LPP算法的二維LPP流形算法提取信號流形成分,然后定義了奇異值熵定量衡量不同故障狀態(tài)下流形特征的差異。該方法直接以二維信息為研究對象避免了一維流形算法需將二維信息轉(zhuǎn)化為向量帶來的信息損失,與一般PCA方法相比更能發(fā)現(xiàn)隱藏在高維數(shù)據(jù)流形結(jié)構(gòu)中的局部數(shù)據(jù)特征。工程信號分析驗(yàn)證了該方法的有效性。流形奇異值熵與概率神經(jīng)網(wǎng)絡(luò)結(jié)合應(yīng)用,進(jìn)一步證實(shí)了該方法具有很高的可靠性。 4.針對工程實(shí)際操作與應(yīng)用問題,開發(fā)了一套滾動軸承故障振動分析系統(tǒng)。將信號處理技術(shù)、故障診斷技術(shù)、數(shù)據(jù)庫知識、虛擬儀器技術(shù)及人機(jī)交互技術(shù)相結(jié)合,采用遞進(jìn)式分模塊進(jìn)行研制,滿足了工程現(xiàn)場方便快捷實(shí)用的需求。
[Abstract]:As one of the key and fault prone parts in rotating machinery equipment, the running state of rolling bearings directly affects the performance of the whole equipment system, so it is of great significance to study the status identification and fault diagnosis of rolling bearings. Signal de-noising and fault feature extraction are the core contents in state identification and fault diagnosis. Because of the complex running environment of rolling bearing, the disturbance is much, the noise is large, and the fault signal is mostly non-stationary and nonlinear signal. Thus, the effectiveness of the traditional methods of noise reduction and fault feature extraction is greatly reduced. Therefore, in this paper, the rolling bearing is taken as the research object. According to the characteristics of its early fault vibration signal under strong background noise, the manifold method is combined with other modern vibration signal analysis methods. The noise reduction and feature extraction of rolling bearing fault signals are studied in depth. The main contents of the thesis are as follows: 1. The background significance of the topic and the development process of rolling bearing fault diagnosis at home and abroad are discussed, and the two key problems of noise reduction and fault feature extraction in contemporary rolling bearing fault diagnosis are summarized in detail. This paper analyzes the common fault forms of rolling bearings and their causes and consequences, and expounds the vibration mechanism of rolling bearings and the concrete application methods of the theory of vibration analysis in time domain, frequency domain and time and frequency domain. 2. Aiming at the problem that the early weak fault characteristics of rolling bearings are easily submerged by noise and interference components, a new method for reducing noise of early weak fault signals based on improved EMD is proposed by combining KPCA manifold, EMD and LTSA manifold. First, KPCA manifold denoising is performed before EMD decomposition, then all IMF coefficients are extracted by LTSA manifold algorithm on the basis of EMD decomposition, and the new signal is obtained by the sum of IMF coefficients, which can be used to reduce noise. This method not only makes full use of the advantage of EMD complete adaptation to analyze nonstationary nonlinear signals, but also effectively overcomes the effect of noise on EMD decomposition. The problem of losing fault information caused by neglecting most components in conventional EMD applications is well solved. The effectiveness and superiority of the method are verified by comparing and analyzing the actual signals in engineering. 3. To solve the problem of how to effectively extract the sensitive features of non-stationary nonlinear fault signals, a novel time-frequency fault feature extraction method for rolling bearings based on two-dimensional manifold and Hilbert time-frequency spectrum is proposed. On the basis of Hilbert time-frequency analysis, the two-dimensional LPP manifold algorithm based on improved LPP algorithm is applied to extract the signal flow formation fraction, and then the singular value entropy is defined to quantitatively measure the difference of manifold characteristics in different fault states. This method takes two-dimensional information as the research object directly and avoids the information loss caused by the one-dimensional manifold algorithm which needs to transform the two-dimensional information into vectors. Compared with the general PCA method, it can find the local data features hidden in the high-dimensional data stream shape structure. The engineering signal analysis verifies the effectiveness of the method. The application of Manifold singular value entropy and probabilistic neural network further proves that this method is highly reliable. 4. A rolling bearing fault vibration analysis system is developed for practical operation and application. The signal processing technology, fault diagnosis technology, database knowledge, virtual instrument technology and human-computer interaction technology are combined to develop the progressive sub-module.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TH133.33;TH165.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王廣斌;黃良沛;趙先瓊;;基于分形維和局部切空間均值重構(gòu)的非線性降噪方法[J];電子測量與儀器學(xué)報(bào);2010年08期

2 趙雯雯;曾興雯;;一種新的EMD去噪方法[J];電子科技;2008年05期

3 成忠;諸愛士;陳德釗;;ISOMAP-LDA方法用于化工過程故障診斷[J];化工學(xué)報(bào);2009年01期

4 曾大有;王曉威;鄧風(fēng)茹;;量子力學(xué)中的Heisenberg測不準(zhǔn)原理的數(shù)學(xué)推導(dǎo)以及在小波分析中的應(yīng)用[J];華北航天工業(yè)學(xué)院學(xué)報(bào);2006年04期

5 楊宇,于德介,程軍圣,丁戈;經(jīng)驗(yàn)?zāi)B(tài)分解(EMD)在滾動軸承故障診斷中的應(yīng)用[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年05期

6 張振躍,查宏遠(yuǎn);線性低秩逼近與非線性降維[J];中國科學(xué)(A輯:數(shù)學(xué));2005年03期

7 鄧?yán)?李鋒;姚金寶;;基于流形學(xué)習(xí)和隱Markov模型的故障診斷[J];計(jì)算機(jī)集成制造系統(tǒng);2010年10期

8 詹宇斌;殷建平;劉新旺;;局部切空間對齊算法的核主成分分析解釋[J];計(jì)算機(jī)工程與科學(xué);2010年06期

9 李文斌;張建宇;;LabVIEW和MATLAB混合編程在齒輪箱故障診斷系統(tǒng)中的應(yīng)用[J];機(jī)械設(shè)計(jì)與制造;2011年04期

10 廖廣蘭,史鐵林,來五星,姜南,劉世元;基于核函數(shù)PCA的齒輪箱狀態(tài)監(jiān)測研究[J];機(jī)械強(qiáng)度;2005年01期

相關(guān)博士學(xué)位論文 前6條

1 李長寧;機(jī)械故障信號統(tǒng)計(jì)建模及其故障診斷方法的研究[D];哈爾濱工業(yè)大學(xué);2010年

2 彭兵;基于改進(jìn)支持向量機(jī)和特征信息融合的水電機(jī)組故障診斷[D];華中科技大學(xué);2008年

3 郭磊;基于核模式分析方法的旋轉(zhuǎn)機(jī)械性能退化評估技術(shù)研究[D];上海交通大學(xué);2009年

4 伍小芹;非平穩(wěn)信號的壓縮算法研究[D];北京交通大學(xué);2012年

5 陸金銘;船舶推進(jìn)軸系的動態(tài)影響因素及EMD故障診斷方法研究[D];上海交通大學(xué);2013年

6 周源;基于快速流形學(xué)習(xí)方法的高光譜遙感非線性特征提取研究[D];武漢大學(xué);2013年



本文編號:2422281

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2422281.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶544b0***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com