故障滾動(dòng)軸承的轉(zhuǎn)子系統(tǒng)基座振動(dòng)響應(yīng)特性分析
[Abstract]:Rolling bearing is one of the most widely used parts in rotor system of rotating machinery and is also one of the most easily damaged parts. Therefore, the diagnosis and prediction of rolling bearing fault in rotating machinery is of great significance to the safe and efficient operation of rotating machinery and the reform of maintenance system. The method of fault diagnosis and prediction for rolling bearing of rotating machinery is usually to install the sensor on the bearing seat near the vibration source. Due to the limitation of specific structure and working conditions, it is sometimes difficult to install the sensor, and its versatility is poor. Due to the transmission characteristics of vibration, the signal of fault vibration will be transmitted to the base, and the installation of sensors on the base has the advantages of convenient installation and strong versatility. In this paper, the vibration response of the base to the fault rolling bearing in the rotor system is studied, which provides a theoretical basis for the sensor to be installed on the base to diagnose the fault of the rolling bearing of the rotating machinery. In this paper, the vibration mechanism, finite element analysis and experimental analysis are studied, and the vibration response of the base to the rolling bearing is analyzed. The main research work is as follows: 1. The fault mechanism of rolling bearing is analyzed theoretically. The basic structure, vibration mechanism and main failure modes of rolling bearing are discussed in detail. The characteristic frequency of vibration signal of inner ring fault, outer ring fault and rolling body fault of rolling bearing are discussed. 2. Finite element analysis of rotor-rolling bearing-pedestal system is presented. The rotor-rolling bearing-pedestal system is established by taking the comprehensive fault simulation test bench of Spectra Quest Company as the object. The modal analysis of the rotating parts and the whole system is carried out by using the finite element analysis software ANSYS. The corresponding natural frequencies and modes are obtained. Based on the modal analysis results of rotor-rolling bearing-pedestal system, the harmonic response of the system is analyzed, and the ideal position of sensor installed on the base is obtained. 3. From the point of view of experiment, the response of vibration characteristics of fault rolling bearing on the base is analyzed. The vibration test experiments of rolling bearing under different fault types, speed and load were carried out on the comprehensive fault simulation bench. The vibration response of the base to the fault rolling bearing is studied from two aspects of frequency characteristic and time domain statistics, and the frequency response of the base of the fault rolling bearing under different working conditions is analyzed. The vibration characteristics of rotor-rolling bearing-pedestal system are analyzed experimentally. Based on the vibration analysis of rotor-rolling bearing-pedestal system, the response of base to bearing fault vibration signal is studied in this paper, which lays a foundation for finding an effective method for monitoring and fault diagnosis of rolling bearing based on base.
【學(xué)位授予單位】:湖南科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH133.33;TH165.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 文祥榮,智浩,繆龍秀;基于模態(tài)分析法的結(jié)構(gòu)動(dòng)載荷識(shí)別研究[J];北方交通大學(xué)學(xué)報(bào);2000年04期
2 劉寧;張鋼;高剛;趙志峰;;基于ANSYS的圓柱滾子軸承有限元應(yīng)力分析[J];軸承;2006年12期
3 馬星國(guó);孫雪;尤小梅;;基于ANSYS的滾針軸承的有限元分析[J];中國(guó)工程機(jī)械學(xué)報(bào);2008年03期
4 靳伍銀;王安;剡昌鋒;;機(jī)床基礎(chǔ)振動(dòng)的動(dòng)力學(xué)特性[J];蘭州理工大學(xué)學(xué)報(bào);2008年01期
5 崔志琴,蘇鐵熊,趙冬青,白小蘭;復(fù)雜組合結(jié)構(gòu)的有限元模態(tài)分析[J];華北工學(xué)院學(xué)報(bào);2001年03期
6 吳福忠;;數(shù)控車(chē)床主軸力學(xué)特性的有限元分析方法[J];機(jī)床與液壓;2009年06期
7 郭大慶;吳玉厚;;陶瓷軸承電主軸主軸的振動(dòng)模態(tài)分析[J];機(jī)電產(chǎn)品開(kāi)發(fā)與創(chuàng)新;2006年01期
8 李克雷;謝振宇;;基于ANSYS的磁懸浮轉(zhuǎn)子的模態(tài)分析[J];機(jī)電工程;2008年01期
9 孫黎;王春秀;王紅燕;;基于ANSYS的大型風(fēng)力發(fā)電機(jī)齒輪箱低速軸的模態(tài)分析[J];CAD/CAM與制造業(yè)信息化;2010年Z1期
10 呂振華;結(jié)構(gòu)動(dòng)力學(xué)修改重分析方法的發(fā)展[J];計(jì)算結(jié)構(gòu)力學(xué)及其應(yīng)用;1994年01期
相關(guān)博士學(xué)位論文 前5條
1 陸爽;基于現(xiàn)代信號(hào)分析和神經(jīng)網(wǎng)絡(luò)的滾動(dòng)軸承智能診斷技術(shù)研究[D];吉林大學(xué);2004年
2 蘇榮華;隨機(jī)參數(shù)結(jié)構(gòu)的模態(tài)分析及其應(yīng)用的研究[D];遼寧工程技術(shù)大學(xué);2005年
3 周福昌;基于循環(huán)平穩(wěn)信號(hào)處理的滾動(dòng)軸承故障診斷方法研究[D];上海交通大學(xué);2006年
4 畢果;基于循環(huán)平穩(wěn)的滾動(dòng)軸承及齒輪微弱故障特征提取應(yīng)用研究[D];上海交通大學(xué);2007年
5 趙協(xié)廣;基于小波變換和經(jīng)驗(yàn)?zāi)B(tài)分解的滾動(dòng)軸承故障診斷方法研究[D];山東科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 萬(wàn)良虹;基于小波分析的滾動(dòng)軸承故障診斷方法研究[D];華北電力大學(xué)(北京);2004年
2 胡愛(ài)玲;高速電主軸動(dòng)靜態(tài)特性的有限元分析[D];廣東工業(yè)大學(xué);2004年
3 孫良環(huán);基于希爾伯特變換的扭振測(cè)量方法及其在齒輪故障診斷中的應(yīng)用[D];太原理工大學(xué);2005年
4 高紅斌;基于靜動(dòng)力學(xué)的滾動(dòng)軸承故障模型分析及物理模擬[D];太原理工大學(xué);2006年
5 尚志勇;轉(zhuǎn)子—軸承系統(tǒng)的非線性動(dòng)力學(xué)分析[D];哈爾濱工業(yè)大學(xué);2006年
6 俞培松;滾動(dòng)軸承振動(dòng)故障診斷技術(shù)的研究及其實(shí)際應(yīng)用[D];同濟(jì)大學(xué);2007年
7 王寧;柔性轉(zhuǎn)子—軸承系統(tǒng)振動(dòng)模態(tài)分析及控制[D];四川理工學(xué)院;2007年
8 姜銳紅;基于循環(huán)平穩(wěn)的滾動(dòng)軸承早期故障診斷應(yīng)用研究[D];桂林電子科技大學(xué);2009年
9 張生;基于振動(dòng)信號(hào)處理及模態(tài)分析的機(jī)械故障診斷技術(shù)研究[D];燕山大學(xué);2009年
10 朱穎莉;基于MSP430的滾動(dòng)軸承故障監(jiān)測(cè)系統(tǒng)[D];南昌大學(xué);2009年
,本文編號(hào):2359686
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2359686.html